
Sandboxing IPC

CITS3007 Secure Coding
Inter-Process Communication

Unit coordinator: Arran Stewart

1 / 44

Sandboxing IPC

Highlights

▶ memory isolation
▶ sandboxing
▶ IPC

2 / 44

Sandboxing IPC

Memory isolation

We know that one principle of secure design is to limit shared
resources.

Memory isolation helps with this

▶ Goal: Prevent one program from interfering with other running
programs, the operating system, and maybe itself.

3 / 44

Sandboxing IPC

Memory isolation

▶ Each running process sees virtual addresses
▶ The process is isolated from, and cannot access, other

processes’ virtual memory.
▶ Whenever code in that process accesses memory, this gets

translated into the correct accesses to physical memory
▶ In modern architectures, address translation is usually done by

hardware, by the Memory Managment Unit (MMU) or Memory
Protection Unit (MPU), using information provided by the OS.

4 / 44

Sandboxing IPC

Sandboxing

5 / 44

Sandboxing IPC

Sandboxing

▶ If we need more communication between processes, we can use
the filesystem, or one of the IPC techniques we look at later
▶ e.g. pipes, FIFOs, sockets, shared memory

▶ What if instead we want less communication?

6 / 44

Sandboxing IPC

Sandboxing

Sandboxing: a security technique for isolating untrusted code from
the host platform

Usual reason is to limit the potential damage code can do, and what
access it has to information about the host OS and other processes.

7 / 44

Sandboxing IPC

Types of damage

A process could deliberately or accidentally . . .

▶ corrupt application data
▶ corrupt memory
▶ corrupt local files/filesystem
▶ corrupt other processes
▶ spread via the network to other computers

8 / 44

Sandboxing IPC

Types of separation

Some types of separation are:

▶ Whole-system virtualization
▶ Same architecture as host
▶ e.g. VirtualBox, VMWare

▶ Whole-system emulation
▶ Different architecture to host, emulated entirely in software
▶ e.g. QEMU

▶ Containerization / partial system resources emulation
▶ e.g., Docker, Podman

▶ In-process application sandboxes
▶ e.g. using techniques like capabilities and seccomp

9 / 44

Sandboxing IPC

Containerization

A containerized process is given the illusion that it is the only
application running on the platform (other than, perhaps, its own
dependencies).

Docker and Podman are examples of containerization technologies.

10 / 44

https://www.docker.com
https://podman.io

Sandboxing IPC

How containerization is done

▶ By default, processes on Unix systems can see a fair amount of
information about each other, via the /proc filesystem
(or tools like ps)
▶ And this information is normally true and accurate

▶ Who or what decides what information a process gets? The OS.
▶ But they don’t have to be.
▶ e.g. An OS designer might decide that some user IDs can be

categorized as “guest” users, perhaps, with less privilege than a
normal user.

11 / 44

https://docs.kernel.org/filesystems/proc.html

Sandboxing IPC

How containerization is done

On Linux, done using a number of kernel features:

▶ namespaces - limits what a process can see
▶ cgroups - limits what resources a process can use
▶ seccomp - limits what system calls a process can make

Docker combines these, but it’s also possible to use particular
techniques individually if desired.

12 / 44

Sandboxing IPC

cgroups

▶ Control groups (“cgroups”) – kernel feature for limit, doing
accounting of, and isolating resource usage of a collection of
processes
▶ e.g. “Allow this process(es) to use at most 1024MB of

memory”, or “. . . 20% of 1 CPU”.
▶ Allows management of

▶ memory
▶ CPU
▶ block I/O
▶ network
▶ device drivers

13 / 44

Sandboxing IPC

cgroups example of use

You can use cgroups from the command line.

create a cgroup

$ sudo cgcreate −g cpu:/my_cpu_limited_grp

set 35% of 1 core allowed

$ sudo cgset −r cpu.cfs_period_us=1000000 my_cpu_limited_grp

$ sudo cgset −r cpu.cfs_quota_us=350000 my_cpu_limited_grp

execute a command in that cgroup

sudo cgexec −g cpu:my_cpu_limited_grp my−expensive−command

Instead of my-expensive-command, you could also do bash, to get a
Bash shell in which all processes are CPU-limited.

14 / 44

Sandboxing IPC

namespaces

cgroups limits what a process can use; ns limits what a process can
see.

▶ pid: what other processes can be seen?
▶ net: networking interfaces can be seen?
▶ mnt: what files/filesystems can be seen?
▶ uts: what hostname is seen?
▶ ipc: allows namespace-specific IPC

▶ e.g. semaphores, message queues, shared memory
▶ user: what user IDs does the process see? what user ID does it

think it runs with?
▶ allows mapping of user IDs
▶ within namespace, process could “think” it’s root

▶ time: allow slower/faster/different clock times

15 / 44

Sandboxing IPC

namespaces

Can be demonstrated from shell.

$ sudo unshare --uts

▶ Create new uts (hostname) namespace

▶ Set a new hostname:

$ hostname cits3007

▶ In another shell can run hostname and see that it’s unaltered for
other processes.

16 / 44

Sandboxing IPC

seccomp

▶ Prevents execution of certain system calls by a process through
a customizable filter.

Steps to use BPF filter:

1. Construct filter using BPF rules
2. Install filter using seccomp() or prctl()

3. exec() new program or use a function in dynamically loaded
shared libraries

17 / 44

Sandboxing IPC

IPC

18 / 44

Sandboxing IPC

Inter-process communication (IPC)

IPC any mechanism provided by an operating system for
processes to share data.

Technically, using the filesystem counts as a type of IPC – but we
normally mean more direct methods.

19 / 44

Sandboxing IPC

IPC technologies
There are many . . .

▶ pipes
▶ named pipes (aka FIFOs)
▶ Full-duplex pipes (STREAMS pipes)
▶ System V message queues
▶ System V semaphores
▶ shared memory
▶ sockets

▶ Unix domain sockets
▶ network sockets

▶ streams
▶ signals
▶ . . .

Not really a single, coherent design, rather many distinct
technologies.

Someone would invent a new way for processes to communicate on
Unix-like systems, it would get adopted by others.

20 / 44

Sandboxing IPC

IPC technologies

Stream-based IPC

▶ Things with file-like operations (read and write) on them
▶ Examples: pipes, FIFOs, sockets, streams

Segment-based IPC

▶ Techniques based on sharing memory segments
▶ Examples: shared memory, memory-mapped files

Message-based IPC

▶ Things that allow individual messages or signals of some sort
to be sent

▶ Examples: signals, message queues

21 / 44

Sandboxing IPC

Choosing an IPC technology

Normally, we want to keep IPC as private as possible.

e.g. If communicating with child processes – can rely on inheritance
of open files when forking, and use pipes.

Absent kernel exploits, should be few ways to intercept the
communication.

If paranoid, could always encrypt information as well.

22 / 44

Sandboxing IPC

Signals in Unix

▶ On Unix systems, signals are a fundamental IPC mechanism
▶ Signals are software interrupts delivered to a process
▶ Used to notify a process that a specific event has occurred.

23 / 44

Sandboxing IPC

Commonly used Signals

Some commonly used signals on Linux:

▶ SIGTERM (15): Terminate a process gracefully. Allows
cleanup before exit.

▶ SIGKILL (9): Forcefully terminate a process. No cleanup is
performed.

▶ SIGHUP (1): Hang up. Typically used to restart a process or
reload its configuration.

▶ SIGINT (2): Interrupt from the keyboard (e.g., Ctrl+C).
▶ SIGQUIT (3): Quit signal. Similar to SIGINT but also

generates a core dump.
▶ SIGSTOP (19): Stop the process. Can be resumed with

SIGCONT.

24 / 44

Sandboxing IPC

Signalling processes

Processes can signal other processes, or themselves, in various ways:

kill command The kill command sends signals to processes. E.g.,
kill -TERM <pid> sends a termination signal.

Keyboard shortcuts In the terminal, Ctrl+C sends a SIGINT signal
to the foreground process.

Other shortcuts (e.g. Ctrl+Z) can potentially send
others.

Programmatic Use the kill() function (more violent than it
sounds)

25 / 44

Sandboxing IPC

Signal handling in programs

▶ Processes can define custom behavior on receiving signals.
▶ They do so by setting signal handlers – functions executed in

response to signals.
▶ Set using signal() or sigaction()

▶ Can be used for e.g., reloading configurations
▶ Webservers often do this: instead of having to re-start server,

you send it a signal

26 / 44

Sandboxing IPC

Practical use cases

▶ Graceful process termination and cleanup.
▶ Reloading configurations without restarting.
▶ Managing daemon processes.
▶ Debugging and profiling processes using signals like

SIGUSR1/SIGUSR2.

27 / 44

Sandboxing IPC

Default behavior

When a process receives a signal, its behavior is determined by the
signal type. Unless customised, the default behavior is:

SIGTERM (15): Termination signal Terminate the process
gracefully. The process can perform cleanup
operations before exiting.

SIGKILL (9): Forced termination signal Terminate the process
immediately without any cleanup. Data loss may
occur.

SIGHUP (1): Hang-up signal Terminate the process. Historically
used to restart or reconfigure daemons.

28 / 44

Sandboxing IPC

Default behavior

SIGINT (2): Interrupt signal Terminate the process. Often
triggered by pressing Ctrl+C in the terminal.

SIGQUIT (3): Quit signal Terminate the process and generate a
core dump for debugging. Process can send itself
SIGQUIT

SIGSTOP (19): Stop signal Stop the process. Can be resumed
with SIGCONT.

29 / 44

Sandboxing IPC

Security implications of signals

Race conditions:

▶ Using handlers can be tricky
▶ Timing issues can lead to race conditions when handling

signals.
▶ What happens if a signal is received when already handling a

signal?
▶ Need to consider this
▶ Behaviour depends on OS settings, particular signal – some are

marked as “reentrant”
▶ Attackers could try to exploit for unauthorized access or

privilege escalation.
▶ (And, of course, the usual memory-based vulnerabilities are

relevant)

30 / 44

Sandboxing IPC

Security implications of signals

Information Leakage:

▶ Signals could expose process information to attackers,
potentially leaking sensitive data.

31 / 44

Sandboxing IPC

Best practices

Signal whitelisting

▶ Allow only trusted signals and sources.
▶ Limit which signals a process can receive.

32 / 44

Sandboxing IPC

Pipes (aka “unnamed pipes”)

Aka “anonymous pipe”

You’ve already used these . . .

$ ls | grep somefile

▶ Unidirectional data channel using standard file-writing and
reading mechanisms

33 / 44

Sandboxing IPC

Pipes

▶ Typically used for communication between a parent process and
its child process.

▶ Each process normally gets one “end” of the pipe (read or
write)

▶ Data written to the write-end of the pipe is buffered by OS
▶ Until read from the read-end of the pipe.
▶ For two-way communication – can use two pipes in opposite

“directions”.
▶ Pipes have limited capacity; writing to a full pipe may block

the writer.
▶ Reading from an empty pipe may block the reader until data is

available.

34 / 44

Sandboxing IPC

Pipe documentation

▶ See man 2 pipe
▶ man 7 pipe - overview of pipes and FIFOs

35 / 44

Sandboxing IPC

Creating a pipe

▶ To create a pipe, use the pipe() system call:

int pipe(int filedes[2]);

▶ Creates a pipe with two file descriptors:
▶ filedes[0] (read end)
▶ filedes[1] (write end)

▶ Data written to the write end (filedes[1]) can be read from
the read end (filedes[0]).

36 / 44

Sandboxing IPC

Writing to the pipe

▶ Use write() to write data to the pipe:

ssize_t write(int fd, const void *buf, size_t count);

▶ Example:

write(filedes[1], "Hello, Pipe!", 12);

37 / 44

Sandboxing IPC

Reading from the pipe

▶ Use read() to read data from the pipe:

ssize_t read(int fd, void *buf, size_t count);

▶ Example:

char buffer[20];

read(filedes[0], buffer, 20);

38 / 44

Sandboxing IPC

Closing

Close unused pipe ends to prevent resource leaks.

close(filedes[0]);

// Close the read end in the writing process

close(filedes[1]);

// Close the write end in the reading process

39 / 44

Sandboxing IPC

FIFOs

Aka “named pipes”

▶ Very similar to pipes, but:
▶ FIFOs exist as files in the file system.

▶ Can be used for both related and unrelated processes.

40 / 44

Sandboxing IPC

Creating a FIFO

▶ Create a FIFO using the mkfifo() system call:

int mkfifo(const char *pathname, mode_t mode);

▶ Specify the path to the FIFO and its permissions in the mode

argument.

▶ Creating a FIFO:

mkfifo("/tmp/myfifo", 0666);

41 / 44

Sandboxing IPC

FIFO example

▶ Process 1 writing to the FIFO:

int fd = open("/tmp/myfifo", O_WRONLY);

// ... write some data to the fd

close(fd);

▶ Process 2 reading from the FIFO:

int fd = open("/tmp/myfifo", O_RDONLY);

// Read data from the FIFO

close(fd);

42 / 44

Sandboxing IPC

Security considerations

▶ Like any file – FIFOs must be secured with appropriate
permissions.

▶ Unauthorized access can lead to data exposure or tampering.

43 / 44

Sandboxing IPC

Further reading

The following have some useful further discussion of
containerization technologies:

▶ Pfleeger et al, Security in Computing (6th edn, Boston:
Addison-Wesley Professional, 2024).
See section 5.1, “Security in operating systems”

44 / 44

	Sandboxing
	IPC

