
Threat modelling with STRIDE Testing basics

CITS3007 Secure Coding
Secure software development

Unit coordinator: Arran Stewart

1 / 49

Threat modelling with STRIDE Testing basics

Highlights

▶ Threat modelling with STRIDE
▶ Testing basics

2 / 49

Threat modelling with STRIDE Testing basics

Threat modelling with STRIDE

3 / 49

Threat modelling with STRIDE Testing basics

Four questions

Approach from Adam Shostack at Microsoft:

1. What are we building?
2. What can go wrong?
3. What are we going to do about it?
4. Did we do a good job?

4 / 49

Threat modelling with STRIDE Testing basics

Four questions – activites

1. What are we building?
▶ Outcome: a model or diagram of the system

(and identified assets)
2. What can go wrong?

▶ Outcome: prioritized list of threats
3. What are we going to do about it?

▶ Outcome: prioritized list of mitigations or countermeasures
4. Did we do a good job?

▶ Outcome: validation of prior steps; tests; gaps identified;
improvements to process

5 / 49

Threat modelling with STRIDE Testing basics

Iterable

6 / 49

Threat modelling with STRIDE Testing basics

Scope

“Small and often” is better than “comprehensive, but never finished”.

▶ Full inventory of all potential threats for a large, complex
system could be huge

▶ But it’s better to do something than nothing, and it’s better to
identify the most critical threats than to aim for completeness

First pass = focus on biggest, most likely threats, to high-value
assets

▶ Other assets and threats can be dealt with later; scope can be
increased

7 / 49

Threat modelling with STRIDE Testing basics

What are we building?

The aim is to produce a model or high-level description of the
system, including assets (valuable data and resources) that need
protection.

▶ Traditionally:
▶ data flow diagram (DFD), or
▶ Unified Modelling Language (UML)

But any sort of model will do.

Could be a design document or a box-and-arrows whiteboard sketch.

8 / 49

Threat modelling with STRIDE Testing basics

Level of detail

No model is perfect – it is a useful simplification of reality.

▶ Needs enough granularity that we can analyse it, identify assets
and threats

▶ Always possible to iterate the process later with more detailed
models if necessary

▶ Too little detail ⇒ details will be missed
Too much detail ⇒ the work will take too long

9 / 49

Threat modelling with STRIDE Testing basics

Iterating a model

We can always note down spots where a model could be improved
later.

Phrases to watch out for: “sometimes”, “also”.

▶ “sometimes this data store is used for X”, “this component is
also used for Y” ⇒ more detail could be useful

10 / 49

Threat modelling with STRIDE Testing basics

Identify assets

These are things we want to protect.

Usually data.

But could also be:

▶ hardware
▶ information technology resources (like bandwidth,

computational capacity)
▶ physical resources (electricity)

Can you think of threats targeting these?

11 / 49

Threat modelling with STRIDE Testing basics

Identify assets

Assets should be prioritized – which are most important?

▶ We could try to hide everything about our server, for example
▶ But is the best use of our time?

▶ Compare server details with (e.g.) financial data, password
hashes, cryptographic keys

12 / 49

Threat modelling with STRIDE Testing basics

Identify assets

Don’t try and put a dollar value on assets. Avoid superfluous and
unrealistic granularity.

▶ One idea: categorize with “T-shirt sizes”
▶ “Large” (major assets), “Medium” (valuable assets, but less

critical), “Small” (minor consequence).
▶ . . . maybe your project needs “Extra-large”

(super-critical)?

Remember other parties/stakeholders’ viewpoints – something you
think is of “minor consequence” could be much more important to
(e.g.) a customer, CEO, finance, etc.

13 / 49

Threat modelling with STRIDE Testing basics

What can go wrong? – Identify threats

Methodically go through the model, component by component, flow
by flow, looking for possible threats.

Identify

▶ attack surfaces (places an attack could originate)
▶ Points where an attacker could interpose themselves

▶ trust boundaries (the borders between more-trusted and
less-trusted parts of the system)
▶ These will intersect data flows

▶ threats in each of the possible STRIDE categories.

Tip: threats often lurk at trust boundaries.

14 / 49

Threat modelling with STRIDE Testing basics

Identify attack surfaces

These are an attacker’s “points of entry”, or opportunities for
attack. (For example: communication over a network.)

▶ When we look at mitigations – try to completely remove, or at
least reduce, opportunities for attack

15 / 49

Threat modelling with STRIDE Testing basics

Identify attack surfaces

Physical example: we have a building we want to secure.

▶ What’s better – many exits and entries?
▶ Or: just a single exit and entry, which we can monitor carefully,

and have (e.g.) security screening, metal detectors at.

16 / 49

Threat modelling with STRIDE Testing basics

Identify threats

For each of the STRIDE categories – e.g. tampering – we ask, What
advantages could an attacker gain if they did/subverted X?

A suggested approach: brainstorm first – come up with ideas
quickly, without critiquing or judging them yet

17 / 49

Threat modelling with STRIDE Testing basics

Analyse, understand and prioritize threats

For each identified threat:

▶ flesh out the details
▶ try to assess the chance of them happening
▶ assess what the impacts would be

18 / 49

Threat modelling with STRIDE Testing basics

Analyse, understand and prioritize threats

▶ For probability and impact – no need for exact numbers – just
use a point/level system (e.g. 1 to 3, 1 to 5)
▶ Give your levels labels – “likely”, “unlikely”; “minor

impact”, “showstopping / enterprise-destroying”
▶ Be cautious of unrealistic levels of granularity –

can you really distinguish “5%” versus “7.5%” probability, or
“3/10” from “4/10”?

19 / 49

Threat modelling with STRIDE Testing basics

Ranking threats

Microsoft “DREAD” model:

▶ Damage: How great would the damage be if the attack
succeeded?

▶ Reproducibility: How easy is it to reproduce an attack?
▶ Exploitability: How much time, effort, and expertise is needed

to exploit the threat?
▶ Affected users: If a threat were exploited, what percentage of

users would be affected?
▶ Discoverability: How easy is it for an attacker to discover this

threat?

20 / 49

Threat modelling with STRIDE Testing basics

What are we going to do about it? – mitigations

▶ Propose ways of dealing with each threat – usually called
“mitigation” or “countermeasures”.

▶ But in full: either mitigate, remove, transfer, or accept.

21 / 49

Threat modelling with STRIDE Testing basics

Mitigations and other approaches

▶ Mitigate risk by redesigning or adding defenses.
▶ The aim is either to reduce the chance of the risk occurring, or

lower degree of harm to an acceptable level
▶ Remove a threatened asset if it is not actually needed

▶ Or if removal is not possible – seek to reduce the exposure of
the asset, or limit optional features of your system that increase
the threat.

22 / 49

Threat modelling with STRIDE Testing basics

Mitigations and other approaches

▶ Transfer the risk – offload responsibility to a third party.
▶ Example: Insurance is a common type of risk transfer
▶ Example: Outsource responsibility for e.g. processing payments,

or processing sensitive data, to an enterprise with expertise in
the area.

▶ Accept the risk (once it’s well understood) as being reasonable
to incur.

23 / 49

Threat modelling with STRIDE Testing basics

Mitigations – questions to ask

▶ Can we make the attack less likely to work?
▶ Can we make the harm less severe – perhaps only some of the

data is accessible?
▶ Can we make it possible to undo the harm – e.g. backups?
▶ Can we make it more obvious when harm has occurred – e.g. by

ensuring we have comprehensive logging and monitoring?

24 / 49

Threat modelling with STRIDE Testing basics

Did we do a good job? – validation, review and testing

▶ Validate previous steps, act upon them, look for gaps missed
▶ Test the efficacy of mitigations, from most to least critical

25 / 49

Threat modelling with STRIDE Testing basics

Validation

▶ For a model – does it match what has actually been
implemented?

▶ For threats – have we describe them properly? missed any?
▶ do they: describe the attack, the context, the impact?

▶ Other stakeholders – have testing/quality assurance staff
reviewed the model?

▶ Mitigations – is each threat mitigated (or otherwise dealt with)
▶ Are the mitigations done correctly? Have they been tested?

26 / 49

Threat modelling with STRIDE Testing basics

Testing basics

27 / 49

Threat modelling with STRIDE Testing basics

Overview

▶ What is the purpose of testing?

28 / 49

Threat modelling with STRIDE Testing basics

What is testing? Why test?

▶ Testing is a systematic attempt to find faults in a software
system in a planned way.
▶ “Faults”, or “defects”, are anything in the system that causes it

to behave in a way different from its specification.
▶ We test because it’s much cheaper (monetarily, and in cost to

an organization’s reputation) to find faults early, before
software is released, than after

29 / 49

Threat modelling with STRIDE Testing basics

Testing functions

▶ How do we know what a function is supposed to do?
⇒ Refer to its documentation.

▶ Could be
▶ a man page (e.g. for strlen)
▶ extracted API documentation

30 / 49

Threat modelling with STRIDE Testing basics

Testing functions

strlen
NAME

strlen − calculate the length of a string

SYNOPSIS

#include <string.h>

size_t strlen(const char *s);

DESCRIPTION

The strlen() function calculates the length of the string pointed

to by s, excluding the terminating null byte ('\0').

▶ Are there any implicit requirements here?

31 / 49

Threat modelling with STRIDE Testing basics

API documentation systems

▶ An API comprises all functions, variables, and macros that are
publicly available and documented as such
▶ If a function says – “this is not part of the API” – you rely on it

at your own risk
▶ Many languages come with API documentation generation

tools
▶ e.g. Javadoc for Java, Pydoc and Sphinx for Python, Godoc for

Go
▶ C does not

▶ Common tools used to extract C API information include
Doxygen and cldoc (based on the Clang compiler)

32 / 49

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.python.org/3/library/pydoc.html
https://pkg.go.dev/golang.org/x/tools/cmd/godoc
https://www.doxygen.nl
http://jessevdk.github.io/cldoc/

Threat modelling with STRIDE Testing basics

Doxygen

Doxygen extracts API information from specially marked up
comments – documentation blocks.

/** @brief Sets the position of the cursor to the

* position (row, col).

*

* Subsequent calls to putbytes should cause the console output to

* begin at the new position. If the cursor is currently hidden, a call

* to set_cursor() must not show the cursor.

*

* @param row The new row for the cursor.

* @param col The new column for the cursor.

*/

void set_cursor(int row, int col);

33 / 49

Threat modelling with STRIDE Testing basics

Documentation blocks vs comments

▶ In C, API documentation is normally embedded in C comments
▶ But don’t think of them as “comments” – they serve an

entirely different purpose
▶ Comments are for maintainers and implementers of the code

▶ Explain why and how something is implemented
▶ Should be brief, and not clutter the code

▶ Documentation is for users of the code
▶ Explains what the callers must do, and what they can expect
▶ Can be as extensive as needed

34 / 49

Threat modelling with STRIDE Testing basics

API contents

What should go in the API documentation?

▶ The preconditions – any conditions which should be satisfied by
the caller when the function is called.

▶ The postconditions – the return value of the function, and any
changes the function makes to the system state (“side effects”)

The specification for a function is like a contract between the caller
of the function and the implementer:

“If you, the caller, satisfy the preconditions, then I, the
implementer, promise the postconditions will be true after-
wards.”

If the preconditions are not satisfied, the behaviour of the function
is undefined.

35 / 49

Threat modelling with STRIDE Testing basics

API contents – bsearch
bsearch - binary search of a sorted array
#include <stdlib.h>

void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

Description
The bsearch() function searches an array of nmemb objects, the initial member
of which is pointed to by base, for a member that matches the object pointed to
by key. The size of each member of the array is specified by size.

The contents of the array should be in ascending sorted order according to the
comparison function referenced by compar. The compar routine is expected to
have two arguments which point to the key object and to an array member, in
that order, and should return an integer less than, equal to, or greater than zero
if the key object is found, respectively, to be less than, to match, or be greater
than the array member.

36 / 49

Threat modelling with STRIDE Testing basics

API contents – bsearch

bsearch - binary search of a sorted array
Return value
The bsearch() function returns a pointer to a matching member of the array, or
NULL if no match is found. If there are multiple elements that match the key,
the element returned is unspecified.

37 / 49

Threat modelling with STRIDE Testing basics

Tests in C
What do tests look like in C?

// test of strlen

const char * s = "somestring";

size_t expected_result = 10;

size_t actual_result = strlen(s);

if (expected_result != actual_result) {

fprintf(stderr,

"%s:%d: expected len to be %zd, but got %zd\n",
__FILE__,
__LINE__,

expected_result,

actual_result

);

exit(EXIT_FAILURE);

}

38 / 49

Threat modelling with STRIDE Testing basics

“Arrange, Act, Assert”

When writing tests, it’s useful to follow the “Arrange, Act, Assert”
pattern:

Arrange prepare any needed resources (variables, data
structures, files, external programs, etc.)

Act invoke the behavior we want to test. (In C: calling a
function.)

Assert Look at the resulting state of the system and see if it
is what we expected.

39 / 49

Threat modelling with STRIDE Testing basics

Testing frameworks

▶ The disadvantage of the strlen test we saw before is that the
program exits once a test is failed – annoying, if multiple tests
need to be run

▶ Testing frameworks may handle tasks including
▶ identifying and running a user-selected set of the tests
▶ helping ensure the system is in a known state before a test is run
▶ providing developers with utility functions so they can write the

“Arrange” and “Assert” parts of a test
▶ providing “mocks” for expensive or hard-to-use parts of the

environment
▶ reporting tests results in a useful format (either human- or

machine-readable)

40 / 49

Threat modelling with STRIDE Testing basics

check

In labs, we will use the Check testing framework.

Install with:

sudo apt−get install check

There are many others, but Check has a number of advantages:

▶ Doesn’t require any special build tools – gcc (and Make, if
desired) are enough

▶ Protects the address space of the program under test using fork

41 / 49

https://libcheck.github.io/check/

Threat modelling with STRIDE Testing basics

Address space problems

In C, testing is more difficult, because the testing framework runs in
the same address space as the function being tested.

If the function being tested corrupts memory, it could prevent the
testing routines from working.

Check addresses this by fork-ing off a separate copy of the program
for each test –

⇒ every test has its own address space.

42 / 49

Threat modelling with STRIDE Testing basics

Testing using check
▶ Easiest way: write tests in a test suite (“.ts”) file, and use the

checkmk program to convert them into full .c code

mytests.ts

#suite adjust_score_tests

#tcase arithmetic_testcase

#test arithmetic_works

int m = 3;

int n = 4;

int expected = 7;

int actual = m + n;

ck_assert_int_eq(actual, expected);

43 / 49

Threat modelling with STRIDE Testing basics

Compiling and running tests
We usually want to enable protective features and sanitizers

⇒ if a function fails, it fails as early and obviously as possible.

compile

$ gcc −g −std=c11 −pedantic −Wall −Wextra −Wconversion \

−fno−omit−frame−pointer \

−fstack−protector−strong \

−fsanitize=address,undefined,leak \

−c −o myprog.o myprog.c

$ gcc −g −std=c11 −pedantic −Wall −Wextra −pthread \

−fno−omit−frame−pointer \

−fstack−protector−strong \

−fsanitize=address,undefined,leak \

−c −o mytests.o mytests.c

44 / 49

Threat modelling with STRIDE Testing basics

Compiling and running tests

link

$ gcc −o mytests mytests.o myprog.o \

−lcheck_pic −pthread −lrt −lm −lsubunit \

−fsanitize=address,undefined,leak

run

$./mytests

Running suite(s): adjust_score_tests

100%: Checks: 2, Failures: 0, Errors: 0

mytests.ts:65:P:arithmetic_testcase:arithmetic_works:0: Passed

mytests.ts:91:P:filesize_works_testcase:filesize_small_works:0: Passed

45 / 49

Threat modelling with STRIDE Testing basics

Mocks

When writing a test, we often want

▶ the test to run as fast as possible
▶ the test results to rely only on the function under test – not

other extraneous systems

So what if we’re testing a function that reads information from a file
or database?

⇒ This is very slow, and adds a dependency on the filesystem or
DBMS
⇒ If a test failure was reported, was it due to our function or the
DB?

46 / 49

Threat modelling with STRIDE Testing basics

Mocks and test doubles

Mocks or test doubles (more general term)

▶ Actors use doubles to replace them during certain scenes
▶ Dangerous or athletic scenes
▶ Skills the actor doesn’t have, like dancing or singing

▶ Test doubles replace software components that cannot be used
during testing

47 / 49

Threat modelling with STRIDE Testing basics

Reasons for test doubles

▶ Component has not been written
▶ The real component does something destructive that we want

to avoid during testing (unrecoverable actions)
▶ The real component interacts with an unreliable resource
▶ The real component runs very slowly
▶ The real component creates a test cycle

▶ A depends on B, B depends on C, C depends on A

48 / 49

Threat modelling with STRIDE Testing basics

C support for test doubles

▶ To mock files, we can use memfd_create – provides an
“in-memory” file

▶ To mock functions – tricky but various solutions
▶ gcc provides the “weak” attribute for functions – allows for

library functions which can be overridden/replaced by user code

49 / 49

	Threat modelling with STRIDE
	Testing basics

