
XOR operations Block ciphers and modes Encryption worst practices

CITS3007 Secure Coding
Cryptography best practices

Unit coordinator: Arran Stewart

1 / 39



XOR operations Block ciphers and modes Encryption worst practices

Highlights

▶ XOR operations
▶ Block ciphers and modes
▶ Encryption worst practices

2 / 39



XOR operations Block ciphers and modes Encryption worst practices

XOR operations

3 / 39



XOR operations Block ciphers and modes Encryption worst practices

Encrypting with a key

Suppose we have a plaintext of some length n bytes, and a key of
the same length.

Is there a way of combining the two to encrypt the message?

4 / 39



XOR operations Block ciphers and modes Encryption worst practices

XOR operation

One of the most convenient and flexible ways of doing so is to use
the XOR logical operation (sometimes indicated using the ⊕
symbol).

Applied to single bits, the XOR operation is defined as follows:

A B Output

0 0 0
0 1 1
1 0 1
1 1 0

5 / 39



XOR operations Block ciphers and modes Encryption worst practices

XOR in C

In C, the “^” (circumflex) operator performs bitwise XOR-ing on
two integers.

Bitwise operations can be applied to both signed and unsigned
integer types (but we usually stick to unsigned).

uint8_t a = 0b11011010; // 218 in decimal

uint8_t b = 0b01110100; // 116 in decimal

uint8_t res = a ^ b; // 174 in decimal

6 / 39



XOR operations Block ciphers and modes Encryption worst practices

XOR in C

uint8_t a = 0b11011010; // 218 in decimal

uint8_t b = 0b01110100; // 116 in decimal

uint8_t res = a ^ b; // 174 in decimal

7 / 39



XOR operations Block ciphers and modes Encryption worst practices

XOR in Python

▶ Python adopts the ^ operator from C (as do many other
languages)

▶ It also provides convenient functions for displaying the bits in a
number.

>>> a = 0b11011010 # 218 in decimal

>>> b = 0b01110100 # 116 in decimal

>>> res = a ^ b

>>> bin(res)

'0b10101110'

8 / 39



XOR operations Block ciphers and modes Encryption worst practices

Properties of bitwise XOR

Some useful properties of bitwise XOR are:1

▶ It is symmetric – A ⊕ B is the same as B ⊕ A
▶ If we take some number, XOR it with a second number K , and

then XOR it with K again – we get back our original number.
▶ In other words, for any numbers A and K

(A ⊕ K ) ⊕ K = A

1These assume both our inputs are of the same size. If our inputs are of
different sizes, the smaller will be “widened” so that it’s of the same type as the
larger.

9 / 39



XOR operations Block ciphers and modes Encryption worst practices

One-time pads

The property that
(A ⊕ K ) ⊕ K = A

means we can use the XOR operation to encrypt and decrypt using
a key.

10 / 39



XOR operations Block ciphers and modes Encryption worst practices

One-time pads

▶ Assume our plaintext is a byte sequence P
▶ Assume our key is a completely random byte sequence K of the

same length.
▶ We can encrypt P by XORing it with K
▶ and if the recipient has the key, they can decrypt by XORing it

with K again

plaintext

key

ciphertext

11 / 39



XOR operations Block ciphers and modes Encryption worst practices

Security of one-time pads

One-time pads are one type of cryptography that we can prove are
information-theoretically secure, and impossible to break.2

We need the following conditions for that to be true:

▶ The key must be at least as long as the plaintext.
▶ The key must be generated from a random, uniformly

distributed non-algorithmic source (e.g. a hardware random
number generator).

▶ The key must never be reused
▶ The key must be kept completely secret by the parties using

the encryption.

2Claude Shannon proved in 1949 that one-time pads have a property he
called “perfect secrecy” – they give a cryptanalyst no information about the
plaintext, except its maximum possible length.

12 / 39



XOR operations Block ciphers and modes Encryption worst practices

Security of one-time pads

▶ Why is a one-time pad unbreakable?
▶ Because if the key was perfectly random, the ciphertext, too,

will be indistinguishable from a random sequency of bytes.
▶ There literally is no pattern in the ciphertext that could be

used to break it.
▶ For, say, a 20-byte message, there are 28×20 possible keys it

could have (around 1048).
▶ No way to break encryption

▶ If we try all possible keys, we’ll generate all possible plaintexts
of 20 bytes length

▶ We have no way of knowing which is correct.

13 / 39



XOR operations Block ciphers and modes Encryption worst practices

Drawbacks of one-time pads

So why not use one-time pads for all encryption?

The main drawback is we need to have some way of distributing the
keys to all recipients of a message, and we need some way of
agreeing with them which key to use.

14 / 39



XOR operations Block ciphers and modes Encryption worst practices

XOR uses
One-time pads have fallen out of use in modern times, but we still
use the XOR operation for encryption and decryption.

Some examples:

Stream ciphers In a stream cipher, we have some continuous source
(the keystream) of pseudorandom bytes.

To encrypt, we XOR our plaintext with this keystream.

At the other end, the recipient needs some way of
calculating the same keystream, and can use it to
decrypt the ciphertext.

Cryptographic primitve XOR is used a building block in more
complex cryptographic algorithms. It’s used in the
AES (Advanced Encryption Standard) and in block
cipher “modes”.

15 / 39



XOR operations Block ciphers and modes Encryption worst practices

Block ciphers and modes

16 / 39



XOR operations Block ciphers and modes Encryption worst practices

Cipher block modes

When using block ciphers, the cipher operate on chunks or blocks
of fixed length.

Let’s suppose we’ve split our plaintext into a number of blocks.
How do we actually encrypt them?

17 / 39



XOR operations Block ciphers and modes Encryption worst practices

Cipher block modes

▶ We choose what’s called a block mode, which is a way of
applying the cipher to the blocks.

▶ There are many modes – we will just look at a couple of
illustrative examples.

18 / 39



XOR operations Block ciphers and modes Encryption worst practices

ECB (“Electronic Code Book”)

ECB mode is a mode you almost certainly shouldn’t choose.

In ECB

▶ Each block is encrypted independently, using the same encryption
algorithm and key

▶ There is no feedback or “chaining” between blocks

As a result, two plaintext blocks with the same content will encrypt to the same
ciphertext – patterns will be clearly visible.

19 / 39



XOR operations Block ciphers and modes Encryption worst practices

ECB (“Electronic Code Book”)

So why does ECB exist?

It’s intended for secure transmission of single values (e.g. a key to
be used with some other encryption method/protocol) – not for
encrypting messages.

20 / 39



XOR operations Block ciphers and modes Encryption worst practices

IV (Initialization Vector)

Block cipher modes other than ECB typically require a random
initialization vector (IV) (also as nonce or salt).

▶ ECB is one of the few block modes that doesn’t require an IV
(part of what makes it insecure)

▶ IV serves similar purpose as password salts
▶ ensures the same plaintext does not encrypt to the same

ciphertext when encrypted multiple times with the same key.
▶ prevents patterns from appearing in the ciphertext, which could

be exploited by attackers

21 / 39



XOR operations Block ciphers and modes Encryption worst practices

IV security requirements

An IV has different security requirements from a key.

▶ The IV usually does not need to be kept secret.
▶ Nearly always, it’s important never to re-use the same IV with

the same key.
⇒ Re-using an IV is a common security mistake

▶ The IV normally must be random.
⇒ Using an IV that is predictable in some way is another
common mistake.

22 / 39



XOR operations Block ciphers and modes Encryption worst practices

CBC (Cipher Block Chaining)
In CBC mode:

▶ Each plaintext block is XORed with the ciphertext of the
previous block, before being enctypted.

▶ For the first block, the IV is XORed with the plaintext block.

Cipher Block Chaining (CBC) mode encryption

block cipher
encryption

Key

Ciphertext

Plaintext

block cipher
encryption

Key

Ciphertext

Plaintext

block cipher
encryption

Key

Ciphertext

Plaintext

Initialization Vector (IV)

Image source: Wikipedia
23 / 39

https://en.wikipedia.org/wiki/File:CBC_encryption.svg


XOR operations Block ciphers and modes Encryption worst practices

CBC (Cipher Block Chaining)

▶ This mode is very secure against eavesdroppers, even when the
adversary can conduct a “chosen plaintext” attack (i.e. force
encryption of particular chosen plaintexts to see how they’re
encrypted)

But must satisfy the following:

▶ Must use a secure block cipher
▶ Must generate a new, random IV for each messag

24 / 39



XOR operations Block ciphers and modes Encryption worst practices

What cipher block mode to use?

The following block modes are commonly used, and secure when
used properly:

▶ CBC (Cipher Block Chaining)
▶ CTR (Counter)

25 / 39



XOR operations Block ciphers and modes Encryption worst practices

CTR (Counter)

▶ Each block of plaintext is XORed with an encrypted counter
▶ the counter is incremented for each subsequent block

Counter incrementing is fast, so useful where speed is a concern.

26 / 39



XOR operations Block ciphers and modes Encryption worst practices

What cipher block mode to use?

Typical application of different modes:

ECB (“Electronic Code Book”) Secure transmission of single
values (e.g. a key)

CBC (Cipher Block Chaining) General-purpose block-oriented
transmission, authentication

CTR (Counter) General-purpose block-oriented transmission, where
high speed is required

27 / 39



XOR operations Block ciphers and modes Encryption worst practices

Encryption worst practices

28 / 39



XOR operations Block ciphers and modes Encryption worst practices

Not using encryption when you should

Example: Greg Myre, “How does Ukraine keep intercepting
Russian military communications?” (NPR, 26 April
2022)

▶ Although Russia has a modern, secured radio system for
military use, it often hasn’t been used

▶ Russian troops brought their own mobile phones into Ukraine
▶ If mobile phone infrastructure is controlled by an adversary,

they can disable particular numbers (availability) and breach
confidentiality

29 / 39

https://www.npr.org/2022/04/26/1094656395/how-does-ukraine-keep-intercepting-russian-military-communications
https://www.npr.org/2022/04/26/1094656395/how-does-ukraine-keep-intercepting-russian-military-communications


XOR operations Block ciphers and modes Encryption worst practices

Security through obscurity

Kerckhoff’s Principle (Auguste Kerckhoff, 19th C)

▶ Security should depend only on the secrecy of the secret
(private) key.

▶ Security should not depend on the secrecy of the algorithm
itself.
“[The cipher] must not be required to be secret, and it
must be able to fall into the hands of the enemy without
inconvenience.”

Claude Shannon’s take on it: assume that “the enemy knows the
system” (Shannon’s maxim).

If your security depends only on your keeping the algorithm obscure,
that’s poor security.

30 / 39



XOR operations Block ciphers and modes Encryption worst practices

Security through obscurity

“Isn’t relying on a secret key/password ’security through obscurity?”

No! It’s the exact opposite.

Kerckhoff’s Principle says that the key is the one thing that you do
need to keep secure.

31 / 39



XOR operations Block ciphers and modes Encryption worst practices

Hard-coded keys

▶ It can be very tempting to hard-code keys into the source of a
program.

▶ However, anyone who can get hold of the binary will probably
be able to work out the value of the key (through disassembly
and reverse engineering)

▶ If secrecy of the key is breached . . .
▶ Your only way of updating the key is by releasing new versions

of the program
▶ Old versions will continue to use the now insecure key

▶ Key management is a complex area – usually easiest to use
an off-the-shelf system which does key management for you

32 / 39

https://en.wikipedia.org/wiki/Key_management


XOR operations Block ciphers and modes Encryption worst practices

ECB mode for block ciphers

We have already seen this – ECB is a very bad choice of block mode.

The “ECB penguin”:

33 / 39



XOR operations Block ciphers and modes Encryption worst practices

ECB mode for block ciphers

ECB mode was used in Zoom Bill Marczak and John Scott-Railton,
“Move Fast and Roll Your Own Crypto – A Quick
Look at the Confidentiality of Zoom Meetings” (April
3, 2020)

Zoom documentation claims that the app uses “AES-256”
encryption for meetings where possible. However, we find
that in each Zoom meeting, a single AES-128 key is used in
ECB mode by all participants to encrypt and decrypt audio
and video. The use of ECB mode is not recommended
because patterns present in the plaintext are preserved
during encryption.

34 / 39

https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/


XOR operations Block ciphers and modes Encryption worst practices

Poor IV practices – IV re-use
If an initialization vector (IV) is re-used, that can allow encryption to be
broken.

Example: Crypto Bug in Samsung Galaxy Devices: Breaking Trusted
Execution Environments (TEEs)

▶ Researchers analysed hardware backup store, reverse-engineered code,
and found IVs were re-used and subject to attack

▶ Samsung Galaxy S8, S9, S10, S20, and S21 devices were analysed
▶ Attacks are CVE-2021–25490 and CVE-2021–25444.

35 / 39

https://medium.com/asecuritysite-when-bob-met-alice/crypto-bug-in-samsung-galaxy-devices-breaking-trusted-execution-environments-tees-b442f9dea77f
https://medium.com/asecuritysite-when-bob-met-alice/crypto-bug-in-samsung-galaxy-devices-breaking-trusted-execution-environments-tees-b442f9dea77f


XOR operations Block ciphers and modes Encryption worst practices

Poor IV practices – IV re-use/non-random IV

▶ We saw an example last lecture of very poor use of the
PyCrypto library – SaltStack developers chose a poor public
exponent for public-key ceyptography

▶ But also, the library API is fairly badly designed in a way that
encourages misuse

▶ Example: to encrypt using symmetric-key encrpytion, PyCrypto
has an optional parameter for the IV

▶ But the default value is IV = 0, which leads to encryption
being insecure.

▶ Better API design: never allow a default value for the IV

36 / 39

https://www.pycrypto.org


XOR operations Block ciphers and modes Encryption worst practices

Poor choice of hash functions for password storage

Recall that good hash functions should have the following properties

▶ Difficult to invert (also called “preimage resistance”)
▶ Difficult to find a second input that “collides” with the first

(also called “second preimage resistance”)
▶ Slow to compute (because the faster it is to compute, the

easier for attackers to run brute-force attacks)

37 / 39



XOR operations Block ciphers and modes Encryption worst practices

Poor choice of hash functions for password storage

There are hash functions specifically designed for password hash
storage:

▶ pbkdf2, bcrypt, scrypt and argon2

But many systems use hash functions (e.g. MD5, SHA1) which
aren’t designed for password storage.

Those hash functions may be fine for error detection, but typically
lack one of the properties we want for a password hash.

38 / 39



XOR operations Block ciphers and modes Encryption worst practices

Passwords != keys

A password is something memorable to people, normally consists of
printable characters only, and can be of arbitrary length.

A key is a sequence of bytes (not necessarily printable), and is of
some fixed length. (E.g. 128-bit key)

If you need to turn a password into a key, typically you need to
apply a password hash function to it

▶ one of pbkdf2, bcrypt, scrypt or argon2

39 / 39


	XOR operations
	Block ciphers and modes
	Encryption worst practices

