
Basics Password storage

CITS3007 Secure Coding
Introduction to cryptography

Unit coordinator: Arran Stewart

1 / 49

Basics Password storage

Highlights

▶ Ciphers and codes
▶ Symmetric-key and public-key cryptography
▶ Crypto building blocks
▶ Cryptographic hash functions
▶ Password storage

2 / 49

Basics Password storage

Overview of field

3 / 49

Basics Password storage

Cryptography
Cryptography: the study of techniques for secure communication in
the presence of third parties

▶ In other words, applicable to any situation where we want to
make sure a given message can be read by only the sender and
receiver

Cryptanalysis: attempting to find weaknesses in cryptographic
routines.

▶ Why do we need it?
▶ Because currently, the only way we have knowing whether a

new cryptographic techniques “works” is by trying to break it
and failing.

▶ There’s only one cryptographic technique that’s provably
unbreakable – the one-time pad (Shannon 1949) – which for
pragmatic reasons is not much used

4 / 49

https://en.wikipedia.org/wiki/One-time_pad

Basics Password storage

Cryptography

Applications of cryptography:

▶ Communicating securely with websites
▶ We don’t want others to be able to read our requests and

passwords
▶ Transferring funds
▶ Storing user information in a database

▶ e.g. credit card details, passwords
▶ “receiver” of a message might just be ourselves, but at a later

time
▶ Validating that content hasn’t been tampered with

(cryptographic signing)

5 / 49

Basics Password storage

Applying cryptography
Cryptography is obviously immensely useful in helping to achieve
security goals:

▶ confidentiality
▶ integrity
▶ authenticity

However:

▶ Cryptography on its own won’t achieve those goals – it has to
be applied appropriately

▶ Cryptography is easy to get wrong – you can introduce major
security vulnerabilities if you don’t know what you’re doing

▶ Cryptography is [for most of us] not something you should ever
implement yourself
▶ Considerable expertise and validation of designs is required

when implementing new cryptographic libraries or technologies
6 / 49

Basics Password storage

Cryptography pitfalls

We said in lecture 2 that API quality can range from excellent (+10,
“Impossible to use incorrectly”) to appalling (-10, “Impossible to use
correctly”).

Some popular cryptography libraries have fairly low quality APIs,
measured using this rubric – they are somewhere below level 3
(“Read the documentation and you’ll get it right”).

You have to read the documentation very carefully in order not to
make catastrophic mistakes.

7 / 49

http://sweng.the-davies.net/Home/rustys-api-design-manifesto

Basics Password storage

Cryptography pitfalls – API misuse

Example: ECB mode

▶ One cipher we look at is AES (used e.g. in SSH).
▶ It’s what’s called a block cipher – it operates on data in

fixed-size blocks.
▶ If you’re using “128-bit AES”, then the data is split up into

128-bit (16-byte) sized blocks.
▶ You then have to specify a block mode: how to apply the

cipher when you have more than a single block’s worth of data
(usually the case). (More on this later.)

▶ If you happen to select a mode called “ECB” (“Electronic Code
Book”), then you’ll make your encryption easily crackable.

8 / 49

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Basics Password storage

Cryptography pitfalls – ECB penguin

Example: ECB mode

Using ECB mode makes any patterns in the original data very
visible in the encrypted data.

The “ECB penguin”. Original data (left) and data encrypted using ECB (right).
Credit: user Lunkwill of Wikipedia, 2004.

9 / 49

https://en.wikipedia.org/wiki/User:Lunkwill

Basics Password storage

Cryptography pitfalls – API misuse
Example: WinCrypt.h

▶ We know it’s a bad idea to “roll your own” cryptography routines
▶ So if you are on Windows, it makes sense to use the cryptography

APIs provided by Windows – one of these is “WinCrypt.h”
▶ It has multiple “providers” (e.g. the “Microsoft Diffie-Hellman

Cryptographic Provider”), you need to choose one and get a “handle”
to it using CryptAcquireContext()

▶ The API documentation had an example of use of this function

CryptAcquireContext(

&hCryptProv, // handle to the CSP

UserName, // container name

NULL, // use the default provider

PROV_RSA_FULL, // provider type

0); // flag values

10 / 49

Basics Password storage

Cryptography pitfalls – API misuse
Example: WinCrypt.h

CryptAcquireContext(

&hCryptProv, // handle to the CSP

UserName, // container name

NULL, // use the default provider

PROV_RSA_FULL, // provider type

0); // flag values

▶ But if you use the provided code – passing 0 for the “flag values” means
that the private key is kept in the local “key-store” on Windows.

▶ Ransomware writers called the function in this way to encrypt victims’ data
▶ But since the private key needed to decrypt the data was still in the

key-store of victims’ machines, the data was easily recoverable.1

1Emsisoft (2014), “CryptoDefense: The story of insecure ransomware keys
and self-serving bloggers”

11 / 49

https://www.emsisoft.com/en/blog/6032/cryptodefense-the-story-of-insecure-ransomware-keys-and-self-serving-bloggers/
https://www.emsisoft.com/en/blog/6032/cryptodefense-the-story-of-insecure-ransomware-keys-and-self-serving-bloggers/

Basics Password storage

Cryptography pitfalls – SaltStack

Example: Saltstack encryption keys

▶ SaltStack is a tool (now owned by VMWare) used for
configuring and managing large numbers of servers and tasks.

▶ It used the RSA cryptosystem to ecnrypt messages sent
between servers

▶ A SaltStack developer wrote the following code to create an
RSA public key using the pycrypto library:

gen = RSA.gen_key(keysize, 1, callback=lambda x, y, z: None)

12 / 49

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://www.pycrypto.org

Basics Password storage

Cryptography pitfalls – SaltStack

Example: Saltstack encryption keys

gen = RSA.gen_key(keysize, 1, callback=lambda x, y, z: None)

▶ The second parameter (1) is what’s called the “public exponent” for
the cryptosystem – it’s one of a pair of 2 numbers that make up the
public key.

▶ Unfortunately, 1 is a terrible choice – it makes the cryptography easy
to crack.2

▶ SaltStack had to inform users that their encryption keys had been
generated insecurely, and that they should re-generate all keys.3

2StackOverflow (2014), “Why is this commit that sets the RSA public
exponent to 1 problematic?”.

3Salt Project (2013), “Salt 0.15.1 Release Notes”.
13 / 49

https://stackoverflow.com/questions/17490282/why-is-this-commit-that-sets-the-rsa-public-exponent-to-1-problematic
https://stackoverflow.com/questions/17490282/why-is-this-commit-that-sets-the-rsa-public-exponent-to-1-problematic
https://docs.saltproject.io/en/3005/topics/releases/0.15.1.html

Basics Password storage

Cryptography pitfalls – don’t “roll your own”

Example: IOTA DIY hash function

▶ In 2017, the cryptocurrency IOTA was the 8th largest cryptocurrency
(with $1.9 billion market capitalization).

▶ It made use of cryptographic hash functions
▶ Rather than use existing hash functions that were known to work, the

developers decided to implement their own, called “Curl”
▶ Cryptographers analysed the algorithm and found critical weaknesses

in it4

4Neha Narula (2017), “Cryptographic vulnerabilities in IOTA”
14 / 49

https://medium.com/@neha/cryptographic-vulnerabilities-in-iota-9a6a9ddc4367

Basics Password storage

Cryptography pitfalls – IOTA

Example: IOTA DIY hash function

▶ To maintain viability of the cryptocurrency, IOTA developers
were forced to switch to a standard hashing algorithm, SHA3

▶ Per one of the cryptographers, Neha Narula:
. . . [W]hen we noticed that the IOTA developers had
written their own hash function, it was a huge red flag.
It should probably have been a huge red flag for anyone
involved with IOTA.

15 / 49

Basics Password storage

Basics

16 / 49

Basics Password storage

Terminology

plaintext a message we want to encrypt

ciphertext the encrypted message

encryption the process of encoding a message such that only the
authorized parties can access it

decryption the process of decoding a given message

key a sequence that needed both encryption and
decryption

17 / 49

Basics Password storage

Simple example – Caesar cipher

A cipher is a pair of algorithms that encrypt (convert plaintext to
ciphertext) and decrypt (convert ciphertext to plaintext).

A very simple example is the Caesar cipher:

▶ Assume for simplicity our message consists only of letters from
the English alphabet.

▶ We have a key, which is some number from 1 to 26.
▶ To encrypt, we shift every letter “along” by key many places

▶ e.g. If our key is 3, then ‘A’ becomes ‘D’, ‘B’ becomes ‘E’, ‘Z’
becomes ‘C’, etc.

▶ To decrypt, we just shift back
▶ e.g. ‘D’ becomes ‘A’, ‘E’ becomes ‘B’, ‘C’ becomes ‘Z’, etc.

18 / 49

Basics Password storage

Simple example – Caesar cipher

The Caesar cipher is an example of a monoalphabetic substitution
cipher – each letter in the original message is substituted with some
other letter.

▶ If we know a message uses a simple substitution cipher like this,
and we know it’s written in English, then the cipher is very
easy to attack (especially if we have plenty of ciphertext)

▶ Just measure the letter frequency of the ciphertext – the most
common letter is most likely ‘E’, the next most common
probably ‘A’, and use a little guesswork to find out the key
▶ The most common letters in English are found in the nonsense

words “ETAOIN SHRDLU”

19 / 49

https://en.wikipedia.org/wiki/Etaoin_shrdlu

Basics Password storage

Ciphers versus codes

So that’s a cipher.

A code, on the other hand, is just a way of mapping one
representation into another.

For example

▶ ASCII maps English letters and numbers (plus punctutation
and some other special symbols) into a 7-bit number

▶ Morse code maps English letters and numbers into sequences
of dots and dashes

20 / 49

Basics Password storage

Types of cryptography
Two basic types of encryption method:

symmetric-key cryptography
▶ also called “shared key” cryptography
▶ a single key is used, which both encrypts and decrypts
▶ example: Caesar cipher, the key is an integer to shift by
▶ example: an encrypted “zip” file – a key is specified when the file is

created.
public-key cryptography

▶ each party has two keys – a public key (which other people know)
and a private key (which they don’t)

▶ example: an SSH key pair – you can “prove that you are you” to
servers which hold a copy of your public key, because only you have
a copy of your private key.

In addition to these, we also look at cryptographic hash functions (used for
authentication).

21 / 49

Basics Password storage

Symmetric-key cryptography

Symmetric-key cryptography uses a single key for encryption and
decryption.

▶ They use a “shared secret” (the key) known by the sender and
receiver

▶ Up until 1976, when public-key cryptography was invented, this
was the only known form of cryptography

22 / 49

Basics Password storage

Symmetric-key example – Caesar cipher

▶ The Caesar cipher is an example of this. It is a type of cipher
known as a “monoalphabetic substitution cipher”
▶ (meaning: that for any letter, it’s replaced, wherever it appears,

by some other letter)
▶ The “shared key” is just a number (e.g. 3) which represents the

number of “places” to shift each letter.
▶ Monoalphabetic substitution ciphers like these are easily

cracked
▶ Brute force: there are only 25 possible keys – trivial to try them

all
▶ Frequency analysis: “e” is the most common letter in English

(the most common 12 are “etaoinshrdlu”), so the most common
letter in the ciphertext probably represents “e”.

▶ We can use that plus some guesswork to quickly work out the
key.

23 / 49

https://en.wikipedia.org/wiki/Etaoin_shrdlu

Basics Password storage

Symmetric-key example – AES

Example: AES (Advanced Encryption Standard) cipher

▶ Developed in 1990s to replace a previous standard, DES
▶ Uses keys of length 128, 192 or 256 bits
▶ 128-bit AES currently considered safe against brute-force

attacks

24 / 49

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Basics Password storage

Symmetric-key example – AES

AES is one of the symmetric ciphers used by the SSH protocol.

The client and the server derive a secret, shared key using an agreed
method, and the session is encrypted using that key.

The initial connection and negotiation of this shared key uses
asymmetric encryption; but symmetric encryption is much faster
than asymmetric, so it’s used for the remainder of the session.

No-one has proved that AES is secure; but it has been thoroughly
investigated by many cryptographers, and all attempts to break it
have failed.

25 / 49

Basics Password storage

Public-key cryptography

Also called “asymmetric cryptography” or “asymmetric encryption”

Basic idea hit on in 1874 by William Stanley Jevons:5

“Can the reader say what two numbers multiplied together will
produce the number 8616460799? I think it unlikely that anyone
but myself will ever know.”

Multiplication is easy, but factorisation is hard.

The above example can be solved quickly using computers, but would’ve
been very difficult in 1874.

By increasing the size, we can come up with numbers which are still easy
for computers to multiply, but difficult to factorize.

Factorizing a 240-digit (795-bit) number will take around 900 core-years of
computing time.

5In The Principles of Science
26 / 49

https://archive.org/details/theprinciplesof00jevoiala

Basics Password storage

Public-key cryptography

Published public-key cryptographic systems did not appear until the
1970s.

Example of public-key cryptography: RSA (Rivest–Shamir–Adleman)
cryptosystem (1977).

▶ Used by e.g. ssh – you use ssh-keygen to create public and
private keys stored in ~/.ssh directory

▶ id_rsa.pub: public key, you can give this to anyone
▶ id_rsa: private key, you keep this secret

27 / 49

Basics Password storage

Public-key cryptography

Suppose Alice wants to send a message to Bob.

▶ She can encrypt a message using Bob’s public key.
▶ Only Bob can decrypt such a message, using his private key.

Suppose Bob wants to be able to easily prove who he is to (say)
GitHub.

▶ He provides GitHub with his SSH public key.
▶ Later on he wants to authenticate. GitHub encrypts some

random text with Bob’s public key, and sends the encrypted
text to Bob.

▶ Only Bob can decrypt the message – he does so, and sends
GitHub back the random text they encrypted, proving that it’s
him.

28 / 49

Basics Password storage

Cipher building blocks

Most ciphers make use of two basic techniques: substitution and
transposition.

(For simplicity, we’ll phrase these concepts in terms of “letters”; but
in modern ciphers, we would actually apply them at the bit level.)

substitution Substitute letters in the plaintext with other letters,
according to some rule.

transposition Scramble/reorder the letters in the plaintext,
according to some rule.

May seem simple – but even modern symmetric ciphers use these
two techniques.

29 / 49

Basics Password storage

Substitution

▶ We’ve seen how monoalphabetic substitution works – the
Caesar cipher does substitution by a simple rule (“Add K to
each letter, modulo the size of the alphabet”), and no
transposition

▶ More complex rules might make different substitutions
depending on what position we’re at in the plaintext (e.g. we
might cycle through six rules), or might take e.g. pairs of
letters and look up a table to see what to substitute

30 / 49

Basics Password storage

Transposition

▶ Example of a simple transposition rule: the rail fence cipher
▶ Write your plaintext across e.g. 3 “rails”, zig-zagging across

them
▶ Then read off the ciphertext “horizontally”

Rail fence cipher
plaintext THIS WAS A TRIUMPH.

rails

T W T M

H S A A R U P

I S I H

ciphertext TWTMHSAARUPISIH

31 / 49

Basics Password storage

General principles of ciphers

Ciphers have two characteristics which describe how hard it is for an
attacker (given a copy of the ciphertext) to get information about
the plaintext and key, confusion and diffusion.

These characteristics allow a cipher to resist simple statistical
analysis.

confusion A cipher provides good confusion if the ciphertext
gives the attacker little information about the key.

diffusion A cipher provides good diffusion if the ciphertext gives
the attacker little information about the plaintext.

32 / 49

Basics Password storage

Confusion

confusion
Characteristic of a cipher which describes how hard it is for an
attacker, when given the ciphertext, to determine the key

▶ Compare the Caesar cipher: if given the ciphertext, the simple
substitution rule makes it easy to determine the key.

▶ So strong ciphers use much more complex substitution rules.
E.g.: “Given 6 bits from the message, look up table T ; locate a
table row using (b0, b5), and a table column using the middle 4
bits, and substitute the contents of the table cell you get.”

▶ If a cipher provides good confusion, changing the key even
slightly will result in very different ciphertext.

33 / 49

https://en.wikipedia.org/wiki/S-box

Basics Password storage

Diffusion

diffusion
Characteristic of a cipher which describes how hard it is for an
attacker, when given the ciphertext, to determine the plaintext

▶ In the Caesar cipher, the relationship between plaintext and
ciphertext is quite simple

▶ Every letter in the plaintext ends up in exactly the same
position of the ciphertext – no transposition is done

▶ So strong ciphers make use of much more complex rules, and
“spread” the influence of a single letter in the plaintext
throughout a large portion of the ciphertext

▶ If a cipher provides good diffusion, changing the plaintext even
slightly will result in very different ciphertext.

34 / 49

Basics Password storage

Hash functions

A hash function is some function that operates on arbitrary data
(so we may think of it as a list of bytes) and maps it to some
fixed-size value (usually a number).

So we may think of it as:

hash(value: array<byte>) −> vector<byte, N>

for some fixed N.

Example: The MD5 algorithm is a hash algorithm.

▶ It takes in any abitrary list of bytes, and outputs a 128-bit
number.

35 / 49

Basics Password storage

Types of hash functions

To implement a hash function at all, a procedure should

▶ be deterministic: the same input always generates the same
output
(this follows from it being a function)

▶ map inputs of all lengths into some fixed range of outputs.

Anything that meets those criteria qualifies as a hash function (it
might not be a good one, though).

36 / 49

Basics Password storage

Types of hash functions

Some sub-types of hash function:

non-cryptographic hash functions

▶ Used for e.g. calculating checksums for files, or in data
structures like hash tables.

▶ Faster and simpler than others
▶ Not designed to resist deliberate attack
▶ Example: CRC32

37 / 49

https://fuchsia.googlesource.com/third_party/wuffs/%2B/HEAD/std/crc32/README.md

Basics Password storage

Types of hash functions

cryptographic hash functions

▶ Used for e.g. authentication, digital signatures, message
authentication codes

▶ Designed to be resistant to deliberate attack
▶ Have several desirable properties: collision resistance,

preimage resistance, and second preimage resistance
▶ Examples: SHA-2, SHA-3
▶ Non-examples: MD5, SHA-1

▶ No longer suitable for cryptographic purposes
▶ SHA-1 broken in 2005 by researchers from Google and

Centrum Wiskunde & Informatica (CWI) in Netherlands

38 / 49

https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-1
https://shattered.io

Basics Password storage

Types of hash functions

password hash functions

▶ Technically called key derivation functions (KDFs) – but
password hashing is where you’ll most likely encounter them

▶ Designed to resist brute-force attacks (by e.g. clusters of
computers, or dedicated hardware like FPGAs)

▶ In general, all the other types of hash function we’ve seen
should be fast to run (i.e. have good throughput rate)

▶ To resist attack, password hash functions are deliberately slow
▶ Examples: Argon2id, scrypt, bcrypt
▶ Non-examples: everything else. Do not use MD5, SHA-1

For advice on choosing an algorithm, see the OWASP Password
Storage Cheat Sheet

39 / 49

https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Brute-force_attack
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Argon2
https://en.wikipedia.org/wiki/Scrypt
https://en.wikipedia.org/wiki/Bcrypt
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

Basics Password storage

Cryptographic hash functions
In case it’s of interest – the properties of good cryptographic hash
functions we mentioned are as follows:

collision resistance
Should be infeasible to find any two inputs m1 and m2 that
hash to same output
i.e. such that hash(m1) = hash(m2)

preimage resistance
Given a hash, should be infeasible to find a corresponding
input that produces that hash
i.e. we can’t reverse the function

second preimage resistance
If we’re given an input m1, should be infeasible to find a
second input m2 that produces the same hash value
(not the same as collision resistance, because here you’re
given a specific input to match)

40 / 49

Basics Password storage

Password storage

41 / 49

Basics Password storage

How to store passwords

When “storing” user’s passwords, don’t actually store plaintext
password

▶ Very bad if we are compromised
▶ Instead store a hash of the password

▶ this proves (to whatever degree of certainty we would like) that
someone knows the password, without us having to store it

42 / 49

Basics Password storage

Hash functions in /etc/shadow

Recall from labs that in /etc/passwd, often the “password” field is
just an “x”, meaning that a hash is stored in /etc/shadow

A record in /etc/shadow looks like:

bob:$6$3fCW76UTZApV/cMu$0gP... (omitted) ... NKmq/:18949:0:99999:7:::

43 / 49

Basics Password storage

Hash functions in /etc/shadow

bob:$6$3fCW76UTZApV/cMu$0gP... (omitted) ... NKmq/:18949:0:99999:7:::

8 fields separated by colons:

1. Username
2. Hashed password
3. Last password change
4. Minimum password age
5. Maximum password age
6. Warning period
7. Inactivity period
8. Expiration date

Some fields may be empty if the system doesn’t use them
(e.g. expiration date)

44 / 49

Basics Password storage

Hash functions in /etc/shadow

bob:$6$3fCW76UTZApV/cMu$0gP... (omitted) ... NKmq/:18949:0:99999:7:::

▶ The “hashed password” field actually has 3 subfields – it’s
format is $type$salt$hashed

Where “type” is:

▶ 1 – MD5
▶ $2a$ – Blowfish
▶ $2y$ – Eksblowfish
▶ 5 – SHA-256
▶ 6 – SHA-512

45 / 49

Basics Password storage

Hash functions in /etc/shadow

bob:$6$3fCW76UTZApV/cMu$0gP... (omitted) ... NKmq/:18949:0:99999:7:::

The “salt” is just some random value. Rather than hash the
password directly, we hash password + salt (concatenated)

46 / 49

Basics Password storage

Why salt?

Suppose we have access to a bunch of hashed passwords.

We know what hash algorithm was used to create them
(e.g. SHA-512).

So we could just hash the most common passwords people use
(“password”, “abc”, “qwerty”, “123456”) and see if those hashes
turn up in /etc/shadow.

If they do – voilà, we’ve cracked their password.

But if instead what was hashed is (password + salt), this attack no
longer works – even if we know what the salt was.

47 / 49

Basics Password storage

Why salt?

A similar modern technique used by attackers are rainbow tables:

▶ rainbow table: an efficient way to store data that has been
computed in advance to facilitate cracking passwords

Salting prevents the use of rainbow tables.

recommendation
Never store passwords in plaintext. Store a (salt, hash) pair, where
the “hash” is the hashed password + salt.

48 / 49

Basics Password storage

References

▶ Shannon, “A Mathematical Theory of Cryptography”, Bell
System Technical Memo MM 45-110-02, 1945 (PDF)

▶ Shannon, “Communication Theory of Secrecy Systems”, Bell
System Technical Journal, vol. 28(4), page 656–715, 1949

49 / 49

https://www.iacr.org/museum/shannon/shannon45.pdf

	Basics
	Password storage

