
CITS3007 Secure Coding
Access control and setuid

Unit coordinator: Arran Stewart

1 / 39



Highlights

▶ Authentication and authorization
▶ Access control

▶ What is it, how it helps with our security goals
▶ Access control lists and capabilities
▶ setuid and setgid
▶ “Confused deputy” and TOCTOU vulnerabilities

2 / 39



Security goals

On most systems, we have more than one user, and more than one
program.

This makes achieving our “C I A” security goals more complicated.

Two mechanisms that help us are authentication and authorization.

authentication
Verifying who a user is (“Who is this?”)

authorization
Checking whether a particular user is permitted to
perform some action (“What can they do?”)

3 / 39



Authentication

Simple (not necessarily most secure) way to implement
authentication: identify every user using a username and a
password.

(What if a user can change their username? Persistent user IDs,
usually incrementing integers, help solve this.)

4 / 39



Multi-factor authentication

Stronger authentication relies on multiple methods (“factors”) of
proving who you are. Traditionally, two or more of

something you have
E.g. a smart card, or USB fob

something you know
E.g. a password (or even better, a passphrase)

something you are
E.g. your fingerprint, retina scan, or face

5 / 39



Authentication as part of the OS

Authentication provides only very weak guarantees on its own – it must be
used in concert with other techniques.

Example

A desktop computer or laptop might ask for a username and password, but
not encrypt disk storage used, and not use a secure boot process.1

That would mean anyone with physical access to the computer could boot
from e.g. a USB thumb-drive, run their own OS, bypass my computer’s
normal authentication system, and read (or alter) data on disk.

1Usually, a secure boot process should (a) limit what devices the system can
be booted from, (b) only allow the computer to be booted using OSs from
trusted sources, and (c) attempt to detect possible tampering with the hardware.

6 / 39



Authentication best practices

▶ Passwords should not be stored as plain text – in fact, they
should not be stored at all.

▶ Operating systems (and other software) normally instead store
a cryptographic one-way hash of the password or passphrase.
(We discuss hashes further when we look at cryptography.)

▶ Creating a good password hash algorithm is difficult and
error-prone, so it’s best to stick to a known and reliable one.
▶ e.g. The default algorithm on many recent Linux distributions is

an algorithm called yescrypt

7 / 39

https://www.openwall.com/yescrypt/


Authorization

Once a user is authenticated, we need to decide what they are
permitted to do (i.e. perform authorization).

▶ Authorization is enforced by an access control system
▶ The access control system assumes a user has already been

authenticated in some way

Definition: access control system

▶ A collection of methods and components that determines who
has access to particular system resources, and the type of
access they have.

▶ Ensures all actions on resources are within the security policy
▶ Supports our goals of achieving confidentiality and integrity

8 / 39



Access control systems

Why do we cover this?

▶ So you know what’s available when implementing software
▶ OS-provided access control systems often have many features

we can leverage
▶ Because multi-user software typically must implement its own

access control system, and it’s useful to know the basics
▶ e.g. Multi-user software like a bulletin board, ride-sharing app,

database, etc will need to model users, resources and rights

9 / 39



Terminology

principal (or subject)
Representation of a user or a group of users

resource (or object)
Something we want to protect, that a principal can
access or operate on in some way – e.g. a file, a
running process, the database of users.
(On Unix systems, many resources are represented as
files.)

permission (or right)
Some action that can be performed on a resource.
E.g. for a file – reading, writing and executing the
file might be distinct permissions.

10 / 39



Access control system

Examples of questions we might expect an access control system to
answer:

▶ Can Alice read the file “/home/Bob/my-private-journal.txt”?
▶ Can Bob open a TCP socket, listening on port 80?
▶ Can Carol write to row 15 of the database table

“USER-SALARIES”?

11 / 39



Access control system design

▶ Principle to bear in mind: Principle of Least Privilege
▶ Programs, users and systems should be given enough privileges

to perform their tasks, and no more
▶ Efficiency:

▶ We can have many file accesses occuring every second, so our
system needs to be able to make decisions quickly

▶ Expressiveness:
▶ We may want to express complex, high-level policies about who

can do what

12 / 39



Matrix model

▶ Imagine that we have a matrix listing all principals (as rows)
and all resources in the system (as columns)

����� ����� �����

���	� 
�� 
 


� 
��

	�
�� 
��

13 / 39



Matrix model

����� ����� �����

���	� 
�� 
 


� 
��

	�
�� 
��

▶ At the intersection, we list the permissions or rights for that
principal and that resource
(here, {r,w,x} = {read,write,execute})

▶ Called an access control matrix or access matrix

14 / 39

https://en.wikipedia.org/wiki/Access_control_matrix


Matrix model

����� ����� �����

���	� 
�� 
 


� 
��

	�
�� 
��

Terminology you might also see:

access control entry
A triplet of (principal,resource,permission list) –
i.e. one cell from the matrix

access control list
All the access control entries for one resource – i.e., a
column from the matrix

15 / 39



DAC vs MAC – who decides?

Who decides what rights subjects have for particular objects?

One answer:

▶ Individual users can control access to e.g. files that they own
⇒ we have a Discretionary Access Control (DAC) system

▶ Some system mechanism controls access, and individual users
can’t alter it
⇒ we have a Mandatory Access Control (MAC) system

There are other sorts as well – e.g. Role Based Access Control
(RBAC) which we don’t go into in this unit.

16 / 39



DAC vs MAC – who decides?

Discretionary Access Control (DAC) system:

▶ Owners of objects set the permissions
▶ Most common approach
▶ Poses difficulties for e.g. protecting audit logs from sysadmins

Mandatory Access Control (MAC) system:

▶ Enforced by the OS
▶ May be appropriate for e.g. Dept of Defence systems
▶ Implies that superusers/system administrators don’t have

ultimate control
▶ Used e.g. to ensure not even sysadmins can tamper with the

OS kernel,
▶ To be effective, needs hardware support: else we can e.g. boot

from a thumbdrive and take control
17 / 39



DACs

For DACs, there’s usually one sort of right called “ownership”,
which grants the ability to add or remove rights

▶ e.g. granting others the right to read files in your home
directory

18 / 39



DAC complications

▶ Suppose we’re sysadmin: do we really trust users to get all
permissions right?

▶ What if a user wants to download and run programs they found
online – should they be able to?

▶ What if some users should be considered more trustworthy than
others?

19 / 39



Mixed systems

Many OSs will actually implement aspects of both MACs and DACs.

Example: Windows provides a kind of support for some MAC-style,
system-specified permissions.

Downloaded files

▶ Resources have an “integrity-level” label
▶ Default file label = “medium”, but web browser and downloaded files

are “low”
▶ “Low”-labelled files may not alter higher-labelled files.
▶ ⇒ To run some program you downloaded, if it will change files on

filesystem, user must explicitly upgrade it from “low” to “medium”.

20 / 39



Question

What is some (non-OS) software you have used recently which
would have need of an access control system?

▶ Who are the principals? How are they grouped?
▶ What are the resources?
▶ How is authentication done?

(Password? Fingerprint? Something else?)
▶ How would password hashes be stored?
▶ How would you implement it?

21 / 39



Third-party providers

▶ Implementing an access control system can be a complex task
▶ Often we may leverage libraries and services provided by third

parties
▶ e.g. Okta, Azure, Google Cloud

▶ This can solve some problems (How to securely store password
hashes?) but raises others (How much can we trust the
provider?)
▶ Using the libraries is often complex, and many developers rely

on copy-and-pasting code
▶ Doesn’t alleviate us of the responsibility of making sensible

design choices

22 / 39

https://www.okta.com/
https://learn.microsoft.com/en-us/azure/app-service/overview-authentication-authorization
https://cloud.google.com/docs/authentication


Deputies

▶ Suppose a user wants to change their password – stored in
e.g. /sys/PASSWORDS

▶ We can’t give every user read and write permissions to that file

▶ We might give particular programs the ability to take actions
on behalf of particular users at a higher level of privilege than
the user has.
▶ e.g. We might specify that the passwd program, when it runs,

runs as root and can read and alter this sys/PASSWORDS file.
▶ Or we might run a program as a server, started by a privileged

user – and other users just send requests.

23 / 39



Confused deputies
But if we do this carelessly, it leads to confused deputies.

Example: Alice sends a request to a server process started by Bob –
“give me the contents of file1, nicely formatted”

It’s Bob’s permissions that are used to check whether a file can be
read; so Alice could ask for the contents of
/home/bob/my_secret_file.txt, which she shouldn’t be allowed to
have access to.

(See “The Confused Deputy (or why capabilities might have been
invented)”) 24 / 39

https://css.csail.mit.edu/6.858/2015/readings/confused-deputy.html
https://css.csail.mit.edu/6.858/2015/readings/confused-deputy.html


Confused deputies

An example that has actually occurred:

▶ A webserver – each student is allowed to create a public_html

dir from which files for a website are served
(e.g. /home/student1/public_html).

▶ The webserver process has privileged rights (e.g. because it
needs to serve on port 80, which only root can do)

▶ A student creates a public_html in their directory, but it’s a
symbolic link (symlink) to /etc/passwd (or some other file only
root should have access to).

▶ Because the webserver is running as root, it does have access
to files like /etc/passwd; so it serves it up as a webpage.

Solutions to confused deputies: coming up later

25 / 39



Implementing an access control matrix

Suppose we want to implement an access control system – how
should we store the information about rights?

“As a very big 2D array” is not a good idea – many cells would be
empty (i.e. sparse array) or duplicated, array would be large

▶ e.g. Suppose Alice owns a file. Do we really want to store a list
of all users at e.g. UWA who don’t have permission to
read/write it?

▶ We might want to have “default” permissions for things
▶ it’s then wasteful to list them explicitly for every user/subject
▶ only explicitly list people who’ve specifically been granted more

or fewer rights.

26 / 39



Implementing an access control matrix

Some options:

(a) Store by “column” (resource)
▶ Each object is associated with a list of users, and what rights

they have
(b) Store by “row” (user)

▶ Each subject is associated with a list of objects, and what rights
the user has for it

27 / 39



ACL vs capabilities

(a) By “column” (resource)
▶ Each object is associated with a list of users, and what rights

they have
(b) By “row” (user)

▶ Each subject is associated with a list of objects, and what rights
the user has for it

▶ Option (a) leads to the idea of an access control list (ACL)
▶ Option (b) leads to the idea of a capability system (though

there’s more to such a system than just this)
▶ Rights to do things are held by subjects, and can be passed

around to other subjects
NB: Don’t confuse a “capability system” with man 7 capabilities

▶ a Linux approach to making superuser permissions finer-grained
▶ not actually a “capability system”

28 / 39



ACLs vs capabilities

ACL

▶ Store rights as e.g. file metadata
▶ Straightforward to implement
▶ Easy to e.g. revoke one user’s rights to a file
▶ Difficult to determine all rights possessed by one user
▶ Difficult to e.g. revoke a user’s right on all files
▶ Example: All popular OSs (Linux, Mac, Windows)

Capabilities

▶ Easy to determine all rights possessed by one user
▶ Easy to add and remove users, and to delegate rights
▶ Difficult to e.g. change rights of all users to one file
▶ Example: Various distributed OSs (e.g. Amoeba, experimental

system developed in 90s)
29 / 39

https://www.cs.vu.nl/pub/amoeba/amoeba.html


ACLs vs capabilities

▶ In practice, ACLs don’t list every user – doesn’t scale well
▶ Also, we said access control needs to be efficient – in many

systems, permissions are only checked when a file is opened,
not each time the file content is accessed

▶ Many OSs combine aspects of ACLs and capability systems

30 / 39



Capability systems

We don’t look at them in detail, but as noted, many OSs use
aspects of capabilities.

Typically very powerful and flexible.

Particular subjects might have the ability to copy capabilities so
they can be given to others – or perhaps only to transfer capabilities
(i.e., the original subject no longer possesses them)

31 / 39



Unix approach

The Unix approach to subjects (principals):

▶ Users have a user ID, and one or more groups.
▶ The root user (with user ID 0) is the superuser

▶ The first process starts as root, spawns others
▶ Every user has a primary group (stored in /etc/passwd), and

can be a member of others (stored in /etc/group).
▶ A user nobody normally exists that owns no files, and can be

used as a default user for unprivileged operations
▶ Processes execute with the permissions (“effective user ID”) of

the user that started them
▶ When determining rights to files, we use a coarse-grained

approach and divide all principals into
▶ the user/owner
▶ the group owner
▶ everyone else

32 / 39



Unix approach
The Unix approach to objects (principals):

▶ “Everything is a file”
▶ represent as many things as possible as files; then, we can use

filesystem permissions to implement our access control system

33 / 39



Unix approach

▶ Classify file rights as “read”, “write” and “execute”
▶ There are other rights needed to execute particular system calls

(e.g. to kill a process)
▶ The OS kernel will check whether a subject (a process) has

rights to make particular system calls
▶ For the root user, the answer is always “yes”

(but see man 7 capabilities)
▶ Classify subjects as “user”, “group”, “everyone else”
▶ Processes have an actual user ID and group ID (based on the

user that started them)
▶ But can also have an effective user ID and group ID – differs for

setuid and setgid programs
▶ Check file permissions only on open
▶ Effectively, file descriptors are a kind of “capability”, and can be

passed around to e.g. to subprocesses, and even unrelated
processes

34 / 39



Unix approach
▶ Doesn’t easily allow for flexible rules

▶ e.g. “Allow Alice’s file F to be read by every user except Carol
and Dan”

▶ The system calls for managing setuid and setgid programs are
easy to get wrong

▶ Because root can do anything – difficult to create a
sysadmin-untamperable audit trail/log
▶ need to either store off-system/offsite, or modify the DAC

approach

Note:

▶ Many file systems allow files to have “extended attributes” (see
https://en.wikipedia.org/wiki/Extended_file_attributes) which
allow more flexible policies to be implemented on top

▶ On modern systems, the Unix approach is typically agumented
e.g. the SELinux (Security-Enhanced Linux) architecture

35 / 39

https://en.wikipedia.org/wiki/Extended_file_attributes


Solutions to confused deputies

Confused deputies arise when a process with high privileges is
“fooled” into letting a less-privileged principal do something they
shouldn’t.

One solution:

▶ Split the program into two interacting processes that
communicate.

36 / 39



Solutions to confused deputies – client/server

e.g. Suppose a compiler needs to allow users to compile input files
and write to output files, and also should write billing/audit
information to /sys/billing.

▶ Split the compiler into two:
▶ Compiler part runs as user, will only read or write files the user

has access to
▶ A separate process runs as (e.g. root), is communicated with by

compiler process, writes to /sys/billing

▶ Better practice would be to create a dedicated billing user,
not to use root

▶ Principle of Least Privilege: give principals only the rights they
need to perform their job

37 / 39



Solutions to confused deputies – setuid

Client/server approach is not always appropriate (e.g. not especially
fast)

setuid approach:

▶ Make the compiler a setuid program, which starts off running
as root

▶ Open /sys/billing
▶ Immediately drop all root privileges

(again: Principle of Least Privilege)
▶ Now do the job of e.g. reading input files, compiling and

writing to output files

38 / 39



Solutions to confused deputies – setuid

Downsides:

▶ Relies on programmer to get things right
▶ On Unix systems, easy to get wrong
▶ Easy to create TOCTOU bugs – “time of check vs time of use”

if not actual_user_can_access("file1"):

sys.exit(1)

fp = open("file1", "w")

fp.write("some data")

See:

▶ Bishop, “How to Write a Setuid Program” (PDF)
▶ Checklist for Security of Setuid Programs (PDF)

39 / 39

https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use
http://nob.cs.ucdavis.edu/~bishop/secprog/1987-sproglogin.pdf
http://www.cis.syr.edu/~wedu/Teaching/cis785/Papers/setuid.pdf

