
C language refresher Operating system services

CITS3007 Secure Coding
C language, intro to buffer overflows

Unit coordinator: Arran Stewart

1 / 75



C language refresher Operating system services

Outline

▶ C language topics – parts of you C should know
▶ Systems programming refresher – privilege levels and system

calls
▶ Vulnerabilities – buffer overflows

2 / 75



C language refresher Operating system services

C language refresher

3 / 75



C language refresher Operating system services

Why C?

Why do we use C in this unit, instead of some other language
(Python, or C#, or Rust, say)?

4 / 75



C language refresher Operating system services

Why C?

C has a privileged place in the software ecosystem.

▶ Most modern operating systems (e.g. Linux, Windows and
macOS) are written in C
▶ their interfaces are defined in C

▶ Many programming languages have their primary
implementation in C (e.g. Python, JavaScript, Lua, Bash)

So C underpins many modern systems and languages.

5 / 75



C language refresher Operating system services

Why C?

▶ C often serves as a “lingua franca” when extending languages
or developing programs written in multiple languages

▶ For instance, the Python language can be extended by writing
new built-in modules in C.

6 / 75

https://docs.python.org/3.10/extending/extending.html


C language refresher Operating system services

Features

C was created as an efficient systems programming language,
and was first used to re-write portions of the Unix operating system
so as to make them more portable.

It aims to give the programmer a high level of control over the
organization of data and the operations performed on that data.

But it also assumes the programmer knows what they are doing,
and provides very little in the way of safeguards.

7 / 75



C language refresher Operating system services

Features

C inherited some features from the language PL/I, but unfortunately
in some cases opted for less security than PL/I.

For instance, buffer overflows (which we look at shortly) were rare
in PL/I, as it required that programmers always specify a maximum
length for strings:1 C does not implement this feature.

1Karger & Schell (2002)
8 / 75

https://en.wikipedia.org/wiki/PL/I
https://en.wikipedia.org/wiki/Buffer_overflow


C language refresher Operating system services

Features

C leaves many details about the behaviour of programs (for
instance, what range of numbers an int can hold) to the compiler,
and the details can vary from platform to platform.

The intention is to allow the compiler to use the most efficient
types and most efficient processor instructions for the platform
it is targeting.

9 / 75



C language refresher Operating system services

Language standards

We will largely discuss the C11 standard,2 which is still in
widespread use.

That said, as long as your code compiles and runs correctly using
the standard CITS3007 development environment, you are welcome
to use later versions of the language if you wish.3

2ISO/IEC 9899:2011. See ISO/IEC 9899:201x at https://www.open-std.org
for a draft version.

3gcc can be instructed to use C17, for instance, by passing -std=c17 to the
compiler.

10 / 75

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf
https://www.open-std.org


C language refresher Operating system services

Language references and texts

If you’re not already familiar with C, you will need to get up to
speed in the first few weeks through self-study.

See the website for textbook recommendations.

Robert Seacord has a textbook which I quite like, but you should
pick a textbook that you feel comfortable with.

11 / 75

https://cits3007.github.io/resources/#c-programming


C language refresher Operating system services

Language references and texts

If you are already familiar with C:

▶ The ISO/IEC C11 standard is a bit wordy, and the
vocabulary takes a bit of getting used to – but it’s not that
difficult to follow, and it’s the final word on what a legal C11
program should do.

▶ https://cppreference.com actually has very good coverage of
C header files and functions.
Just make sure you’re reading the right one.
▶ From a corresponding C++ page, follow the “C language” links

down the bottom of page
▶ C language topics should have a URL that looks like

https://en.cppreference.com/w/c/SOMETHING

12 / 75

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf
https://cppreference.com


C language refresher Operating system services

These slides != a textbook

Please note: these lecture slides aim to refresh your memory on
details of the C language, and highlight some important differences
from other languages.

They are not a complete reference, nor are they a substitute for a C
textbook.

If you rely on them to explain all the details of the C language, you
will probably get questions wrong in the assessments, and then you
will be unhappy.

13 / 75



C language refresher Operating system services

Major surprises

Some of the following features of C often surprise people coming from
other languages:

▶ (Almost) everything is an integer (or derived from an integer type)
▶ Assignment (“=”) will only sometimes do what you think it should do
▶ If you misuse memory (e.g. going outside the bounds of an array),

you get no warnings or exceptions about this – the compiler assumes
you know what you’re doing
▶ Instead of exceptions, the behaviour of your program becomes

undefined – it literally has no meaning, is not a valid C
program, and the compiler is allowed to generate whatever
compiled code it likes.

▶ Many aspects of program behaviour are not fixed by the language
standard, but are implementation-defined.

14 / 75



C language refresher Operating system services

Definedness

The C language standard gives great latitude to compiler
implementers to do whatever is most efficient for a particular
platform.

Instead of specifying exactly what some construct will do, the
standard leaves this up to the compiler implementer.

15 / 75



C language refresher Operating system services

Definedness
There are three different types of “not-precisely-defined-by-the-standard”
behaviour:

implementation-defined The implementation must pick some behavior, and its
choice must be documented.
(Query: What does “implementation” mean? A compiler? A
version of that compiler? A version of that compiler, targeting a
specific platform?)

unspecified Similar to implementation-defined, except that the choice need
not be documented.
(The choice need not be deterministic or consistent – an
implementation could choose different behaviours at different
times.)

undefined Anything at all can happen; the standard imposes no
requirements. The program might fail to compile, or it might
execute incorrectly, or it might by pure luck do exactly what the
programmer intended.

(See https://c-faq.com/ansi/undef.html for more details.)
16 / 75

https://c-faq.com/ansi/undef.html


C language refresher Operating system services

Definedness exercise

Suppose you have a function eraseAll in a C program, left behind
by some other programmer:

static int eraseAll() {

return system("rm −rf /");

}

Running this function would invoke the rm command, and request it
to delete all files on your system (thus destroying the system).

Fortunately, however, you never actually call the eraseAll function
from your code.

17 / 75



C language refresher Operating system services

Definedness exercise

Suppose that somewhere in the code your program does invoke, you
accidentally cause undefined behaviour (for instance, by going out of
bounds of an array, or trying to dereference an uninitialized pointer).

Can the compiler output a program which calls the eraseAll

function and destroys your system?

18 / 75



C language refresher Operating system services

C data types
C data types

void scalar types

pointer types arithmetic types

floating types integer types

unsigned
integer types

unsigned char

bool

unsigned short

...

char
signed

integer types

signed char

short

...

enumerated types

union types function types aggregate types

array types

structure types

See <stdint.h> for many more integer types (e.g. fixed-width integer types like int32_t).
19 / 75

https://en.cppreference.com/w/c/types/integer


C language refresher Operating system services

“Imaginary” types

Before you can understand strings in C, you have to realize
the truth. C has no strings.

— /u/Different-Brain-9210 on Reddit

20 / 75

https://old.reddit.com/r/cprogramming/comments/11ar86f/handle_dynamic_memory/


C language refresher Operating system services

“Imaginary” types

Unlike many other languages, C does not have a “string” type.

There is no type in C called “string”, representing human-readable
text.

What C has instead are arrays of chars, some of which might
represent strings, and some of which might not.

21 / 75



C language refresher Operating system services

“Imaginary” types

You can think of C as having two “imaginary” types, which it’s up to the
programmer to keep track of in their head:

“blob of bytes”
Raw access to a sequence of contiguous bytes in memory. Other
languages sometimes call this type bytes or a bytestring.4

“string”
A human-readable string of text. To work properly with
string-related library functions, they must be terminated with a
null character (usually written '\0').
If the terminator is missing, that will result in security problems.

Both these “imaginary” types are represented in code as arrays of chars.

4You can also think of char * as sometime being a type called
“view-this-raw-memory-as-a-bytestring”. It’s an exception to the normal rule that
you must never access a location in memory by the “wrong” type.

22 / 75



C language refresher Operating system services

Array decay

C semantics is based on there being arrays sitting in memory at
various locations.

All arrays always have an exact size, and if you go outside the
bounds of the array, that will result in security problems.

Unfortunately, unless you are careful, it’s easy for the information
about array length to “vanish” from the programmer’s view – more
on this in labs.

23 / 75



C language refresher Operating system services

Integers in C

C has a large number of integral data types.5 The most common are:

standard integer types

▶ standard signed integer types: signed char, short int, int, long int,
and long long int

▶ standard unsigned integer types: _Bool (also available as bool),
unsigned char, unsigned short int, unsigned int,
unsigned long int, and unsigned long long int

▶ the char type.

What range of integers these can hold, and which of these types are
equivalent to each other, is implementation dependent.

5In fact, nearly every type you see in this unit (besides function types) is
either an integer type, or derived from (array or struct or pointer to) integer
types.

24 / 75



C language refresher Operating system services

Integers in C
standard integer types

▶ standard signed integer types: signed char, short int, int, long int,
and long long int

▶ standard unsigned integer types: _Bool (also available as bool),
unsigned char, unsigned short int, unsigned int,
unsigned long int, and unsigned long long int

▶ the char type.

The C11 standard states that the char type is equivalent to either
signed char or unsigned char, but which one is the case is
implementation-defined.
It says the size of a char is one byte, and has at least 8 bits, but doesn’t
otherwise constrain how many bits exist in a byte (this, too, is
implementation-defined).6

6The CHAR_BIT macro in <limits.h> will tell you the number of bits per byte.
On Unix-like OSs, the macro NBBY, defined in <sys/param.h>, will give the same
result.

25 / 75



C language refresher Operating system services

Floating point types

C also has three “real floating types”, but we will be less concerned
with them.
real floating types

▶ float
▶ double
▶ long double

(It also has three corresponding types for complex numbers, which we
won’t use at all.)

26 / 75

https://en.wikipedia.org/wiki/Complex_number


C language refresher Operating system services

Functions in C

All executable statements in C must be written inside a procedure –
C calls its procedures “functions”.

C functions may return a result, in which case the signature of the
function will indicate the return type. For instance:

int square(int x);

The function declared above takes one argument (an int), and
returns an int value.

27 / 75



C language refresher Operating system services

Functions in C

void print_int_to_terminal(int x);

Alternatively, a function may be declared as having return type void,
in which case it doesn’t return any value as a result.

Both void and non-void functions may have side effects: they may
for instance modify the values of global variables, perform output to
the terminal, or alter the state of files or attached devices.

28 / 75



C language refresher Operating system services

Function declarations and definitions

A function declaration “tells” code following it about a function:

int square(int x);

A function definition provides the “body” of the function:

int square(int x) {

return x * x;

}

29 / 75



C language refresher Operating system services

Function conventions in C

There are two types of functions in C:

▶ Functions that can fail – they try to do something, but may
sometimes not succeed, even when called correctly.

Examples: fopen, malloc.

▶ Functions that cannot fail – if called correctly, these always
succeed.

Examples: strlen, memcpy, isalpha.

However, it can be easy to call both these sorts of functions
incorrectly.

30 / 75



C language refresher Operating system services

Function conventions in C

The convention in C for function return values is as follows:

Functions that can fail
If the function normally returns a pointer – it will
return NULL to indicate failure.

If the function normally returns a non-negative int –
it will return -1 to indicate failure.

More on these in the labs.

31 / 75



C language refresher Operating system services

Control structures

C has the following control flow structures:

selection statements
if and switch statements

loops
while, do and for loops

jumps
continue, break, goto and return statements

The goto statement is useful in C. One reason is that C does not
have exceptions and “finally” blocks (which can be used to handle
errors and execute “clean-up” code in Java and Python).

goto can be used to jump to an error-handling section of your
function (see your C textbook, or Seacord chap. 5, for details).

32 / 75



C language refresher Operating system services

Control structures

C has the following control flow structures:

selection statements
if and switch statements

loops
while, do and for loops

jumps
continue, break, goto and return statements

The goto statement is useful in C. One reason is that C does not
have exceptions and “finally” blocks (which can be used to handle
errors and execute “clean-up” code in Java and Python).

goto can be used to jump to an error-handling section of your
function (see your C textbook, or Seacord chap. 5, for details).

32 / 75



C language refresher Operating system services

Scope in C

C has two basic types of scope:

▶ global scope (or “file scope”): for variables declared outside
all functions. These are visible from the declaration, to the end
of the file.

▶ block scope: for variables declared within a function or
statement block. These are visible from the declaration, to the
end of the function or statement block.

For global variables (and for functions, which are always global – C
doesn’t have nested functions): adding the keyword static before
them ensures that the variable or function is only visible from within
that file.

Limiting scope is C’s primary method of implementing information
hiding.

33 / 75

https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Information_hiding


C language refresher Operating system services

Scope in C

int OUR_NUM = 42;

int OTHER_NUM ;

static int OUR_PRIVATE_NUM ;

int multiply (int m, int n) {

int i, res = 0;

for (i = 0; i < n; i++) {

int tmp = res + m;

res = tmp;

}

return res;

}

global, usable
in any file

from
another file

global, this
file only

local variable
declarations

local to block

34 / 75



C language refresher Operating system services

Arrays in C

C provides support for 1-dimensional and multi-dimensional arrays.

1-dimensional array

#define ARRAY_SIZE 10

int some_array[ARRAY_SIZE];

2-dimensional array

#define ARRAY_HEIGHT 5

#define ARRAY_WIDTH 10

int two_d_array[ARRAY_HEIGHT][ARRAY_WIDTH];

35 / 75



C language refresher Operating system services

Strings in C

C does not provide a separate datatype for strings – rather, strings
are considered to be arrays of chars, with the NUL character (which
has ASCII code 0) acting as a terminator.

String

// this declaration:

char my_str[] = "cat";

// is equivalent to:

char my_str[4] = { 'c', 'a', 't', '\0'};

36 / 75



C language refresher Operating system services

Pointers in C

Pointer types in C hold a
reference to an entity of some
other type. For instance a
“pointer to int” (written
int *) holds a reference to an
int.

It’s usually convenient to think
of this “reference” as the
address of a location in
memory, but the C11 standard
does not require that to be
the case.

storage
address

name of
variable

content

0000
0001
0002
0003
0004
...

1008a

1004
1005
1008
1009
1010

...

b

po
in

ts
 t
o

A pointer and the variable it references1

1Image courtesy of Wikipedia,
https://commons.wikimedia.org/wiki/File:Pointers.svg

37 / 75

https://commons.wikimedia.org/wiki/File:Pointers.svg


C language refresher Operating system services

Pointers in C

C allows the use of pointer arithmetic. In addition to performing
(say) addition on two integer values, we can perform it on one
pointer value and one integer value.

int * p1 = NULL;

int * p2 = p1 + 4;

Adding 4 to a pointer doesn’t move it along by 4 bytes. (What does
it do?)

We can also subtract one pointer from another, and perform equality
and inequality comparisons on two pointers (==, <, >, <=, and >=).

38 / 75



C language refresher Operating system services

Pointers in C

Many languages disallow pointer arithmetic, since its use can easily
result in invalid pointers (pointers that do not reference a properly
initialized object of the correct type).

C allows it; it is up to the programmer to ensure they comply with
the standard’s rules as to when a pointer is valid.

If the programmer fails to comply with those rules, the result usually
is that the behaviour of the program is undefined.

(In other words: the program has no well-defined “meaning”,
according to the C11 standard; and the standard places no
constraints on what behaviour it may have.)

39 / 75



C language refresher Operating system services

Pointers in C

0 1 2 3 4 5 6 7 8 9

Array length 10

p1 p1 + 4p1 - 3

For instance: if arithmetic is performed on a pointer which
references some element of an array, and the resulting pointer would
go outside the bounds of the array,7 then the behaviour of the
program is undefined.

7To be precise: the pointer must point either to an element of the array, or
the position one past the last element.

40 / 75



C language refresher Operating system services

Pointers in C

A pointer to a variable can be obtained using the ‘&’ (“address-of”)
operator, and pointers can be dereferenced using ‘*’ (the
dereference operator).

int some_num = 42;

int * num_addr = &some_num;

*num_addr = 99;

printf("the number is: %d\n", some_num );

// prints "the number is 99"

variable pointer

dereferencing
a pointer

41 / 75



C language refresher Operating system services

Lifetime

Variables have a storage duration that determines their “lifetime”.

▶ Memory for global variables is allocated when the program
starts running, and persists until the program exits

▶ However, the majority of variables in a program are local
variables, and have what is called “automatic storage duration”
▶ This basically means they “disappear” when the function they

are declared in exits, and the memory allocated to them is
reclaimed

▶ If you’ve somehow managed to hang onto a reference to this
memory, the behaviour of your program is undefined

42 / 75



C language refresher Operating system services

Automatic lifetime and dangling pointers

Consider this function:

int * myfunc() {

int a_local_var = 36;

int * a_pointer = &a_local_var;

return a_pointer;

}

There’s nothing wrong with returning a pointer – lots of functions do it
(like the standard function getenv – char* getenv (const char* name) –
which gives you the value of an environment variable).

But a caller of myfunc will receive a pointer to memory which has been
reclaimed – a “dangling pointer” – and such a pointer results in undefined
behaviour.

43 / 75

https://en.cppreference.com/w/c/program/getenv
https://en.wikipedia.org/wiki/Dangling_pointer


C language refresher Operating system services

dangling pointers
myfile.c

int * myfunc() {

int a_local_var = 36;

int * a_pointer = &a_local_var;

return a_pointer;

}

dangling pointer

Compilers will generally not warn you about this – the above code
compiles with gcc -pedantic -Wall -Wextra with no warnings.

Code static analyzers exist which will warn you – more about them, later.

e.g. clang-tidy myfile.c will give the output

1 warning generated.

myfile.c:4:3: warning: Address of stack memory associated with local

variable 'a_local_var' returned to caller [clang−analyzer−core.StackAddrEscapeBase]
return a_pointer;

^
44 / 75

https://en.wikipedia.org/wiki/Static_program_analysis


C language refresher Operating system services

Dynamically allocated memory

▶ Data which we want to persist beyond the execution time of a
function needs either to be global, or to be allocated in a
region of memory called the heap.

▶ Memory allocated on the heap is said to be “dynamically
allocated”

▶ The primary C functions used to manage dynamic memory are
▶ malloc, for allocating memory, and
▶ free, for releasing it.

void *malloc(size_t size);

void free(void *ptr);

45 / 75

https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.cppreference.com/w/c/memory/malloc
https://en.cppreference.com/w/c/memory/free


C language refresher Operating system services

Dynamically allocated memory
#include <stdio.h>

#include <stdlib.h>

int* make_arr(int n) {

int* arr = malloc(n * sizeof(int));

return arr;

}

int main() {

int n;

printf("How big an array to allocate? ");

scanf("%d",&n); // usually, prefer

// string parsing functions

// like strtol

int* arr = make_arr(n);

for(i = 0; i < n; i++)

arr[i] = n;

free(arr);

}

(See cppreference.com for details of strtol.)

46 / 75

https://en.cppreference.com/w/c/string/byte/strtol


C language refresher Operating system services

Dynamically allocated memory

▶ Once a pointer has been freed, using that pointer’s value at all
– even without dereferencing it – is undefined behaviour.

int *p = malloc(sizeof(int));

free(p);

if (p == NULL) {

// ...

▶ So is calling free on a pointer more than once.

▶ Attempting to read from malloced memory before it has been
initialized results in an “indeterminate value” – not undefined,
but almost certainly not what you want

47 / 75



C language refresher Operating system services

Memory: call stack

On most architectures, calls to C functions work something like this:

▶ Every time a C function starts executing, space is allocated for
its parameters and local variables on the call stack
▶ for each function that is entered, a stack frame gets pushed

onto the call stack
▶ the stack frame consists of enough memory to store the function

parameters, local variables and a record of where to return to
▶ when the function is exited, a stack frame gets taken off the call

stack

48 / 75

https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Call_stack


C language refresher Operating system services

Memory: call stack

void draw_line(point* p1, point* p2){

// ...

}

void draw_rect(point* topLeft, point* botRight){

point p1 = {.x=topLeft−>x, .y=topLeft−>y };

point p2 = {.x=botRight−>x,.y=topLeft−>y };

draw_line(&p1, &p2);

// ...

}

49 / 75



C language refresher Operating system services

Memory: process memory layout

The layout of a process’s data in virtual memory looks something like this.

program instructions (R,X)

global variables (R,W)

command-line args,
environment variables

bottom of memory (0x0)

read from
executable

file

On Linux, cat /proc/some_pid/maps
shows the virtual address space of a
process. (Try cat /proc/self/maps to
get the address space of the cat

process itself.)

The text segment is typically made
shareable, so that multiple processes
can be run from one executable file and
share a single copy (safe, since it’s
read-only).

50 / 75



C language refresher Operating system services

Typedefs

C allows types to be given “aliases”, using the typedef keyword.

The original type comes first, then the alias.

typedef int colour;

51 / 75



C language refresher Operating system services

Structs
C provides structs to create composite data types (“product types”) in
which a related set of variables can be grouped together in one contiguous
block of memory.

struct address {

char * street_number;

char * street_name;

char * suburb;

int postcode;

};

void my_func() {

// we can initialize ...

struct address some_addr = { // like this:

"13a", "Cooper St", "Nedlands", 6009

};

struct address other_addr = { // or like this (since C99)

.postcode = 6009, .suburb = "Nedlands",

.street_number = "13a", .street_name = "Cooper St"

};

} 52 / 75



C language refresher Operating system services

Struct members

typedef struct {

char * street_number;

char * street_name;

char * suburb;

int postcode;

} address;

struct members can be accessed using the “.” (member access) operator.

If, rather than a struct, you have a pointer to a struct, use the “->”
(member access through pointer) operator.

void my_func(struct address a, struct address *pa) {

printf("postcode of a: %d\n", a.postcode);

printf("postcode of pa: %d\n", pa−>postcode);
}

53 / 75



C language refresher Operating system services

enums

C allows user-defined data types which assign meaningful names to
integral constants:

enum shape_operation {

draw = −1,

move,

delete = 4,

hide

};

Enumerated types are integer types, and so can be used anywhere an
integer could be. As a result, they offer no real type safety: nothing
distinguishes an enum shape_operation from (say) a signed int.8

8Each enumerated type is compatible with some integral type which can hold
all the values, but it’s implementation-defined what type that is.

54 / 75



C language refresher Operating system services

Unions

A C union may hold multiple different types, of different sizes – but
only one type at a time.

For instance, suppose we receive a “blob” of data from over the
network which represents a message. The first 8 bits (1 byte) are a
code that tell us what the rest of the “blob” means:

▶ 0 indicates it’s a double
▶ 1 indicates it’s an int

55 / 75



C language refresher Operating system services

Unions

We could use the following to represent these messages:

union double_or_int {

double d;

int i;

};

struct message {

char message_type;

union double_or_int;

};

56 / 75



C language refresher Operating system services

Unions
union double_or_int {

double d;

int i;

};

struct message {

char message_type;

union double_or_int;

};

We can then correctly decode a message with code like this:

void decode_message(struct message * m) {

if (m.message_type == 0) {

double d = m−>d;
printf("It's a double: %f\n", d;

} else if (m.message_type == 1) {

int i = m−>i;
printf("It's an int: %d\n", i;

}

}
57 / 75



C language refresher Operating system services

Unions – a problem
void decode_message(struct message * m) {

if (m.message_type == 0) {

double d = m−>d;
printf("It's a double: %f\n", d;

} else if (m.message_type == 1) {

int i = m−>i;
printf("It's an int: %d\n", i;

}

}

We’ve assumed here that a char is 8 bits in size. And on every reasonable
platform available today, it is (but see here).

If we want to make sure, we can use C11’s static assert feature to verify the size.

#include <assert.h>

#include <limits.h>

// This will be checked at compile time.

static_assert(CHAR_BIT == 8, "only works if a char is 8 bits");

58 / 75

https://stackoverflow.com/questions/2098149/what-platforms-have-something-other-than-8-bit-char


C language refresher Operating system services

Function pointers
Pointers to functions can be passed around and used in C.

The syntax for function pointers is not especially pleasant.

// pointer to a void function taking an int

void (*func_ptr)(int);

void use_ptr(void (*p)(int)) {

p(42); // call pointed−to function

}

void print_num(int n) {

printf("the number is %d\n", n);

}

int main() {

func_ptr = print_num;

use_ptr(func_ptr);

}

59 / 75



C language refresher Operating system services

Operating system services

60 / 75



C language refresher Operating system services

Privilege levels

Access to devices, particular data, or
some CPU instructions may be protected
by hardware – only sufficiently privileged
code (e.g. kernel code) may access them.

(Why? Suppose all user applications
could directly access the disk hardware
at any time. The filesystem would be in
danger of becoming corrupted. The OS
manages orderly access to the hardware.)

For instance, Intel’s processors provide 4
privilege levels, conceptualized as rings,
where inner rings are the most “trusted”,
and outer rings the least.

Kernel

Operating system
services (e.g. drivers)

User applications

61 / 75



C language refresher Operating system services

Privilege levels

A user application is normally executed at a low level of privilege,
and is prohibited from accessing or modifying the memory of other
programs, or resources belonging to inner rings; attempting to do so
triggers a particular type of fault (which can be thought of as a sort
of “exception”), e.g. a general protection fault.

62 / 75

https://en.wikipedia.org/wiki/General_protection_fault


C language refresher Operating system services

System calls

System calls constitute the “API” of an operating system kernel –
they are the programmatic way to request a service from the kernel.

They allow code running in one of the outer levels (user programs)
to obtain a service from one of the inner levels.

An example system call:
the open system call on Unix-like systems opens a file for reading or
writing.

int open(const char *pathname, int flags, mode_t mode);

63 / 75



C language refresher Operating system services

System calls

From a programmer’s point of view, system calls “look” like functions;
however, rather than having a normal function body, they typically are
implemented as assembly code routines, which do the following:

▶ store all the information the kernel needs to provide the requested
service in a fixed location

▶ execute a “software interrupt”, which causes the kernel to jump to an
“interrupt handler”, which examines the information provided

▶ the kernel executes some fragment of kernel code that provides the
requested service

▶ control is then returned to the program that requested the service.

(For more details, refer to e.g. https://www.cs.montana.edu/courses/sprin
g2005/518/Hypertextbook/jim/index.html or any operating systems
textbook.)

64 / 75

https://www.cs.montana.edu/courses/spring2005/518/Hypertextbook/jim/index.html
https://www.cs.montana.edu/courses/spring2005/518/Hypertextbook/jim/index.html


C language refresher Operating system services

Dangerous C functions

If you invoke the command man gets, you will see the following

NAME

gets − get a string from standard input (DEPRECATED)

SYNOPSIS

#include <stdio.h>

char *gets(char *s);

DESCRIPTION

Never use this function.

65 / 75



C language refresher Operating system services

Dangerous C functions

BUGS

Never use gets(). Because it is impossible to tell

without knowing the data in advance how many characters

gets() will read, and because gets() will continue

to store characters past the end of the buffer, it is

extremely dangerous to use. It has been used to break

computer security. Use fgets() instead.

For more information, see CWE−242 (aka "Use of Inherently

Dangerous Function") at

http://cwe.mitre.org/data/definitions/242.html

And if you try to compile code containing gets, gcc will tell you

warning: the 'gets' function is dangerous and should not be used.

66 / 75



C language refresher Operating system services

Why is gets still around?

The C standard tries to be conservative and backwards compatible.

Rather than removing gets, it just says you shouldn’t use it.

67 / 75



C language refresher Operating system services

Usability of gets
Rusty Russell (an Australian Linux kernel contributor) proposed a rating
scheme for APIs ranging from +10 (“It’s impossible to get wrong”) to -10
(“It’s impossible to get right.”).

10. It’s impossible to get wrong.
9. The compiler/linker won’t let you get it wrong.
8. The compiler will warn if you get it wrong.
7. The obvious use is (probably) the correct one.

. . .

-7. The obvious use is wrong.
-8. The compiler will warn if you get it right.
-9. The compiler/linker won’t let you get it right.

-10. It’s impossible to get right.

The gets function falls firmly into the “-10” level.

So what’s the issue?

::: notes

Hints:

▶ Unlike, say, strlen (with signature size_t strlen(const char *s)),
gets doesn’t take a const string pointer; considering that, and the
function description, it follows that gets has to write to the pointer
s it receives.

▶ It therefore follows that it’s irrelevant whether s is null-terminated,
since we’re going to over-write it (not read it)

▶ Therefore s in this case isn’t a “string”, but a pointer to a “buffer” or
“blob of bytes”;
and those ALWAYS have to include a length, else where missing
information about their size.

▶ So, gets reads from stdin, presumably looks for a null terminator,
and writes to s, but doesn’t know how big s is.

68 / 75

https://en.wikipedia.org/wiki/Rusty_Russell
http://sweng.the-davies.net/Home/rustys-api-design-manifesto
http://sweng.the-davies.net/Home/rustys-api-design-manifesto


C language refresher Operating system services

gets
The signature for gets is:

char *gets(char *s);

It reads a line of input from the standard input stream. The idea is
that you pass it the address of a buffer (array) into which it should
copy the line it read.

Here’s an example of use:

#define BUFSIZE 512

// ...

char buf[BUFSIZE];

printf("Please enter your name and press <Enter>\n");

gets(buf);

69 / 75



C language refresher Operating system services

gets

#define BUFSIZE 512

// ...

char buf[BUFSIZE];

printf("Please enter your name and press <Enter>\n");

gets(buf);

The problem is that there is no way of telling gets how big the
buffer buf is. If there are more than 512 characters on the line being
read, gets doesn’t stop – it just keeps copying characters into
memory, past the end of buf.

As we saw when we discussed pointers, this is undefined behaviour –
at this point, there are no guarantees about what the program will
do.

70 / 75



C language refresher Operating system services

Morris worm

The flawed behaviour of gets was famously used in 1988 by Robert
Tappan Morris, a graduate student at Cornell, who created a
“worm” program intended to slowly traverse the whole Internet and
measure its size.

Due to coding errors on Morris’s part, the worm created new copies
as fast as it could, and infected machines became overloaded;
Morris’s “worm” brought down most of the Internet.

One of the ways the worm propagated was by exploiting a
vulnerability in server programs that used the gets function.

71 / 75



C language refresher Operating system services

buffer overflows

#define BUFSIZE 512

// ...

char buf[BUFSIZE];

printf("Please enter your name and press <Enter>\n");

gets(buf);

So what will be sitting in memory after buf?

buf here is a local variable, sitting in the current stack frame. After
it come other local variables, so those will get overwritten; and then
the return address, the location in memory to go to once the
current function has finished; and then the parameters passed to the
current function.

72 / 75



C language refresher Operating system services

buffer overflows

#define BUFSIZE 512

// ...

char buf[BUFSIZE];

printf("Please enter your name and press <Enter>\n");

gets(buf);

If you’re sending a message to some program that uses gets, and
you know the structure of its stack frame, you can deliberately
overwrite the return address so that execution jumps to code of
your choosing (known as “smashing the stack”).

In fact, the data you send could include instructions for executing
some arbitrary program (e.g. the shell), and you could force the
program to jump to the instructions you just wrote.

73 / 75



C language refresher Operating system services

buffer overflows

At least, that’s how the stack could be exploited at the time the
Morris worm was written.

On modern machines, there are several protections in place against
this sort of attack:

▶ stack canaries
▶ address-space layout randomisation (ASLR)
▶ write XOR execute permissions
▶ source fortification

More on these in future lectures!

74 / 75



C language refresher Operating system services

References

▶ Karger, P. A., and R. R. Schell. “Thirty Years Later: Lessons
from the Multics Security Evaluation.” 18th Annual Computer
Security Applications Conference, 2002. Proceedings., IEEE
Comput. Soc, 2002, pp. 119–26,
https://doi.org/10.1109/CSAC.2002.1176285.

75 / 75

https://doi.org/10.1109/CSAC.2002.1176285

	C language refresher
	Operating system services

