
CITS3007 Project 2024

Contents
1 Introduction 1

1.1 Project submission . 2
1.2 Clarifications and changes to the project specification 2

2 Background 2
2.1 The Vigenère cipher . 2
2.2 Some useful websites . 5

3 Tasks 5
3.1 Caesar cipher encryption and decryption functions (20 marks) 5

3.1.1 caesar_encrypt . 5
3.1.2 caesar_decrypt . 5

3.2 Vigenère cipher encryption and decryption functions (20 marks) 6
3.3 Command-line interface (15 marks) . 6
3.4 Challenge tasks . 7

4 Annexes 7
4.1 Marking rubric . 7
4.2 Code requirements . 7
4.3 Coding style . 8
4.4 Security best practices . 9

Version: 0.1
Date: 3 May 2024

1 Introduction
• This project contributes 30% towards your final mark this semester, and is to be completed

as individual work.

• The project is marked out of 55.

• The deadline for this assignment is 5:00 pm Thu 23 May.

1

• You are expected to have read and understood the University Guidelines on Academic
Conduct. In accordance with this policy, you may discuss with other students the general
principles required to understand this project, but the work you submit must be the result
of your own effort.

• You must submit your project before the submission deadline above. There are significant
penalties for late submission (click the link for details).

1.1 Project submission
Submission of the project is via the CSSE Moodle server.

• A “testing sandbox” Moodle area will be made available within 1 week of the specification
being released, which will provide you with some minimal feedback and information you
can use while developing and testing your project submission. It will not include space
for “coding style and clarity” marks.

Note that passing these minimal tests is no guarantee of a project achieving a high
final mark – students are expected to thoroughly test their code at a variety of levels of
optimization, and make use of appropriate static and dynamic analysers.

• A “final submission” Moodle area will be made available no less than 1 week prior to
the project being due, where you can submit final code and answers to questions. It will
include only minimal tests of code, and will include questions that do not require code or
an answer to be submitted, but will be used by markers when assessing coding style and
clarity.

1.2 Clarifications and changes to the project specification
You are encouraged to start reading through this project specification and planning your work
as soon as it is released. Any queries regarding the project should be posted to the Help3007
forum with the “project” tag.

Any clarifications or amendments that need to be made will be posted by teaching staff on the
Help3007 forum.

For an explanation of the process for publication and amendment of the project specification,
see the CITS3007 “Frequently Asked Questions” site, under “How are problems with the project
specification resolved?”.

2 Background
You will need to implement C functions for several tasks, detailed below.

A header file, crypto.h, is provided which defines prototypes for these functions.

2.1 The Vigenère cipher
The Vigenère cipher is a simple form of polyalphabetic substitution cipher. The idea behind it
was originally described by Giovan Battista Bellaso in 1553 (but was later misattributed to
Blaise de Vigenère in the 19th century). The cipher uses a keyword for encryption – the word

2

http://www.governance.uwa.edu.au/procedures/policies/policies-and-procedures?policy=UP07%2F21
http://www.governance.uwa.edu.au/procedures/policies/policies-and-procedures?policy=UP07%2F21
https://ipoint.uwa.edu.au/app/answers/detail/a_id/2711/~/consequences-for-late-assignment-submission
https://quiz.jinhong.org
https://secure.csse.uwa.edu.au/run/help3007
https://secure.csse.uwa.edu.au/run/help3007
https://cits3007.github.io/faq/#how-are-problems-with-the-project-specification-resolved%3F
https://cits3007.github.io/faq/#how-are-problems-with-the-project-specification-resolved%3F
https://en.wikipedia.org/wiki/Giovan_Battista_Bellaso

is repeated to produce a “key stream” the same length as the plaintext. So if our keyword was
“KEY” and our plaintext was “HELLOWORLD”, we would obtain the following:

Plaintext H E L L O W O R L D

Keystream K E Y K E Y K E Y K

Figure 1: Vigenère plaintext and keystream

Each letter of the message is then encrypted using a Caesar cipher shift determined by the
corresponding letter of the keystream. In the example shown in Figure 1, every letter of the
plaintext will be encrypted by a Caesar cipher which is shifted by either

• 10 positions (the position of “K” in the alphabet)
• 4 positions (the position of “E” in the alphabet), or
• 24 positions (the position of “Y” in the alphabet)

where positions are counted starting from 0.

Obviously, a longer keyword will result in fewer statistical patterns showing up in our ciphertext.
Using a keyword of length 1 is exactly equivalent to applying the Caesar cipher. Using a
keyword of length 3 means that every third letter of our plaintext is encrypted using a different
Caesar cipher – but if an attacker knew the length of our key, they could simply split the
ciphertext into 3 (taking every 1st, 2nd and 3rd character), and analyse each one as we would a
Caesar cipher. If the keyword is as long as the plaintext, then very few patterns should show
up at all; and if the keyword is also randomly generated, then we have an encryption system
equivalent to a one-time pad.

Using the keyword and plaintext from Figure 1:

• the first letter of the plaintext will be encrypted using a Caesar cipher shift of 10 (giving
the ciphertext letter “R”)

• the second letter similarly, with a shift of 4 (giving the ciphertext letter “I”), and
• the third letter with a shift of 24 (giving the ciphertext letter “J”).

So the final ciphertext should be as shown in the following example:

Plaintext H E L L O W O R L D

Keystream K E Y K E Y K E Y K

Ciphertext R I J V S U Y V J N

Figure 2: Vigenère example with ciphertext

Early users of the Vigenère cipher made use of a “Vigenère square” (as shown in Figure 3)
to quickly find out what ciphertext letter to use given a particular plaintext and keystream
letter, but we will use modular arithmetic. We will first implement the Caesar cipher (functions
caesar_encrypt and caesar_decrypt), and then make use of those functions to implement the
Vigenère cipher.

3

https://en.wikipedia.org/wiki/One-time_pad

Figure 3: Vigenère square

4

2.2 Some useful websites
The following websites implement the Vigenère cipher, and you can use them to check that you
understand how the cipher works (or to test your code).

• dCode.fr Vigenère implementation
• Boxentriq Vigenère implementation and cracker
• cryptii Vigenère implementation

3 Tasks
You should complete the following tasks and submit your completed work using Moodle.

3.1 Caesar cipher encryption and decryption functions (20 marks)
You are required to implement functions to encrypt and decrypt C strings using the Caesar
cipher. Up to 10 marks are awarded for a successful implementation of these functions. 10
further marks are awarded for coding style and quality of the implementation.

3.1.1 caesar_encrypt

The caesar_encrypt function encrypts a given plain text using the Caesar cipher algorithm with
a specified key within a given range.
void caesar_encrypt(char range_low, char range_high, int key,

const char *plain_text, char *cipher_text

);

A description of this function can be found in the crypto.h header file. Briefly, it encrypts
plain_text and writes the result into cipher_text; characters in plain_text that fall within the
range range_low to range_high are encrypted, but everything outside that range is not – it is
simply copied directly into ciphertext. (Thus, we can specify for instance that text in the range
'A' to ‘Z’ is to be encrypted, but all other characters – such as whitespace, punctuation, and
lowercase text – will be left as is.)

The caesar_encrypt function cannot fail: it always completes successfully if its preconditions
are met.

Example use of caesar_encrypt:
char plain_text[] = "HELLOWORLD";

char cipher_text[sizeof(plain_text)] = {0};

caesar_encrypt('A', 'Z', 3, plain_text, cipher_text);

// After the function call, cipher_text will contain the encrypted text

char expected_cipher_text = "KHOORZRUOG"

assert(strcmp(cipher_text, expected_cipher_text) == 0);

3.1.2 caesar_decrypt

The caesar_decrypt function decrypts a given plain text using the Caesar cipher algorithm.
Calling it with some key n is exactly equivalent to calling caesar_encrypt with the key −n.

5

https://www.dcode.fr/vigenere-cipher
https://www.boxentriq.com/code-breaking/vigenere-cipher
https://cryptii.com/pipes/vigenere-cipher

void caesar_decrypt(char range_low, char range_high, int key,

const char *plain_text, char *cipher_text

);

3.2 Vigenère cipher encryption and decryption functions (20 marks)
You are required to implement functions to encrypt and decrypt C strings using the Vigenère
cipher. Up to 10 marks are awarded for a successful implementation of these functions. 10
further marks are awarded for coding style and quality of the implementation. The required
functionality is described in the crypto.h header file; the prototypes for the functions are as
follows:
void vigenere_encrypt(char range_low, char range_high, const char *key,

const char *plain_text, char *cipher_text

);

void vigenere_encrypt(char range_low, char range_high, const char *key,

const char *cipher_text, char *plain_text

);

3.3 Command-line interface (15 marks)
You are required to implement a function cli with the prototype

int cli(int argc, char ** argv);

The cli function is intended to allow your code to easily be called and tested from the main()

function of a program; the argc and argv arguments have the same meaning as they do in
main(). 5 marks are awarded for implementing the function correctly, 5 marks for coding style
and quality of the implementation, and 5 marks for writing appropriate documentation for the
function using a Doxygen-processable comment (which should start with a forward slash and
two asterisks – “/**” – like Javadoc-processable comments).

The cli function should check whether 3 arguments have been passed (aside from argv[0],
which represents the program name), and print an error message and return 1 if some other
number has been passed.

The first argument should be one of the following strings, representing an operation to perform:

• "caesar-encrypt"

• "caesar-decrypt"

• "vigenere-encrypt"

• "vigenere-decrypt"

If some other string is passed, the function should print an error message and return 1.

The second argument represents a key. If the operation being performed is Caesar cipher
encryption or decryption, this will be an integer; if the operation is Vigenère encryption or
decryption, the second argument can be any string.

The third argument represents a message – either a plaintext to encrypt, or a ciphertext to
decrypt.

6

https://www.doxygen.nl

The cli function should validate that the key is an appropriate int, if Caesar encryption or
decryption is being performed; if an invalid argument is passed, the function should print an
error message and return 1.

Lastly, the cli function should invoke the appropriate encryption or decryption function, using
'A' and 'Z' as the lower and upper bound, respectively, so as to encrypt or decrypt the message
passed in the third argument; it should print the processed message to standard output followed
by a newline, and then return 0.

If in your implementation you make use of any functions that can fail, you should ensure you
check their result, and if they fail, print an appropriate error message to standard error, and
return 1. (You should not call exit().)

3.4 Challenge tasks
For students who would like an extra challenge – up to 4 marks can be awarded for completing
“challenge” tasks. If you want to complete these, you should contact the unit coordinator at
least 4 days before the close of submissions to obtain exact requirements for the tasks.

You will need to implement C functions that analyse and attempt to decrypt a message encrypted
with the Caesar cipher and/or Vigenère cipher. Marks for challenge tasks are completely at the
discretion of the unit coordinator, depending on the quality and scope of the tasks attempted.
Marks awarded for challenge tasks cannot take your project total beyond 100%.

4 Annexes

4.1 Marking rubric
Submissions will be assessed using the standard CITS3007 marking rubrics.

Except where otherwise noted, questions requiring long English answers are marked as per the
standard long answer rubric (see https://cits3007.github.io/faq/#marking-rubric).

Questions requiring code will have marks allocated for correctness, and for style and clarity.

4.2 Code requirements
Note that, as per the standard rubric, your code must compile without errors using gcc in the
standard CITS3007 development environment. If it fails to compile, teaching staff will not fix
it for you, and you are likely to receive only minimal marks for implementation of functions
(though it is still possible to receive marks for style and clarity of code, for those portions of
the project you’ve completed).

If, at the time of submission, some portion of your code is not compiling, you should either
comment it out, or surround it with “#if 0 . . . #endif” preprocessor instructions, so that your
code does compile.

Any .c files or code submitted should #include the crypto.h header as follows:
#include <crypto.h>

7

https://cits3007.github.io/faq/#marking-rubric
https://cits3007.github.io/faq/#marking-rubric

Your code must contain the functions required by this specification, and they must exactly
match the prototypes in the crypto.h file, but you may also write whatever “helper functions”
you wish.

Your code must not include a “main()” function. If it does, your code will fail to compile when
automated tests are run on it, and you are likely to receive minimal marks for implementation.

You may #include any header files that you need to, as long as they are available in the standard
CITS3007 development environment, and you may use non-standard C functions as long as
they are available in that environment.

Although you are strongly encouraged to test your code (testing is discussed in upcoming labs),
you should not submit your test code, and it is not assessed.

4.3 Coding style
All code submitted should comply with the coding guidelines listed at https://cits3007.github.
io/faq/#marking-rubric.

All C code written should:

a. adhere to secure coding best practices, and
b. be properly documented.

The documentation requirement means that, at minimum, all functions should have a comment
just above them describing what the function does.

Functions forming part of the API (and any particularly important internal functions) should
have a documentation block parseable by Doxygen. (The Caesar and Vigenère encryption and
decryption functions in crypto.h already have documentation blocks written for them, so you
do not need to write them.)

When writing documentation, you may assume

a. that readers have read this project specification and the crypto.h header file, so you need
not repeat information from them;

b. that any function with a prototype in the crypto.h header file forms part of the API; and
c. that if you are unable to complete all the project by the time of submission, there is no

need to write documentation for functions you haven’t completed.

Except for documentation blocks, all comments should be written as single-line (“//”) comments
– do not use multiline (“/* .. */”) comments.

As part of keeping your code readable, lines should generally be kept to less than 100 characters
long.

Additionally, note that your code should be considered “library” code – it should not be
interacting directly with a user or the terminal unless the project specification specifically asks
for this. This means your code should:

• never print to standard out or standard error (unless the specification states otherwise);
and

• never call exit(), but instead return with an error value, unless the specification states
otherwise.

8

https://cits3007.github.io/faq/#marking-rubric
https://cits3007.github.io/faq/#marking-rubric
https://www.doxygen.nl

If your code prints to standard out or standard error, it is likely to fail the automated tests
used to mark portions of your code. If that happens, those portions of your code are likely to
receive a mark of 0. Teaching staff will not fix your code to remove statements that print to
standard out or standard error.

4.4 Security best practices
You are expected to bear in mind (and apply!) all secure coding best practices that have been
discussed in class. However, note that in only one case is an integer value obtained from an
untrusted source; in general, you can (and must!) assume that your functions are being called
correctly according to their specification.

9

	Introduction
	Project submission
	Clarifications and changes to the project specification

	Background
	The cipher
	Some useful websites

	Tasks
	Caesar cipher encryption and decryption functions (20 marks)
	caesar_encrypt
	caesar_decrypt

	cipher encryption and decryption functions (20 marks)
	Command-line interface (15 marks)
	Challenge tasks

	Annexes
	Marking rubric
	Code requirements
	Coding style
	Security best practices

